Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 1678, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975985

ABSTRACT

One of the challenges in the field of quantum sensing and information processing is to selectively address and coherently manipulate highly homogeneous qubits subject to external perturbations. Here, we present room-temperature coherent control of high-dimensional quantum bits, the so-called qudits, associated with vacancy-related spins in silicon carbide enriched with nuclear spin-free isotopes. In addition to the excitation of a spectrally narrow qudit mode at the pump frequency, several other modes are excited in the electron spin resonance spectra whose relative positions depend on the external magnetic field. We develop a theory of multipole spin dynamics and demonstrate selective quantum control of homogeneous spin packets with sub-MHz spectral resolution. Furthermore, we perform two-frequency Ramsey interferometry to demonstrate absolute dc magnetometry, which is immune to thermal noise and strain inhomogeneity.

2.
J Phys Condens Matter ; 31(3): 035301, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30524106

ABSTRACT

We develop a theory of electron-photon interaction for helical edge channels in two-dimensional topological insulators based on zinc-blende-type quantum wells. It is shown that the lack of space inversion symmetry in such structures enables the electro-dipole optical transitions between the spin branches of the topological edge states. Further, we demonstrate the linear and circular dichroism associated with the edge states and the generation of edge photocurrents controlled by radiation polarization.

3.
J Phys Condens Matter ; 26(25): 255802, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24888735

ABSTRACT

We report on the observation of magnetic quantum ratchet effect in metal-oxide semiconductor field-effect-transistors on silicon surface (Si-MOSFETs). We show that the excitation of an unbiased transistor by ac electric field of terahertz radiation at normal incidence leads to a direct electric current between the source and drain contacts if the transistor is subjected to an in-plane magnetic field. The current rises linearly with the magnetic field strength and quadratically with the ac electric field amplitude. It depends on the polarization state of the ac field and can be induced by both linearly and circularly polarized radiation. We present the quasi-classical and quantum theories of the observed effect and show that the current originates from the Lorentz force acting upon carriers in asymmetric inversion channels of the transistors.

4.
Nat Nanotechnol ; 8(2): 104-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23334170

ABSTRACT

A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations. This so-called ratchet effect has fascinating ramifications in engineering and natural sciences. Graphene is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.

5.
Phys Rev Lett ; 107(27): 276601, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22243321

ABSTRACT

We observe photocurrents induced in single-layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left to right handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory based on Boltzmann's kinetic equation is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.

6.
Phys Rev Lett ; 105(22): 227402, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21231421

ABSTRACT

We report the observation of the circular ac Hall effect where the current is solely driven by the crossed ac electric and magnetic fields of circularly polarized radiation. Illuminating an unbiased monolayer sheet of graphene with circularly polarized terahertz radiation at room temperature generates--under oblique incidence--an electric current perpendicular to the plane of incidence, whose sign is reversed by switching the radiation helicity. Alike the classical dc Hall effect, the voltage is caused by crossed E and B fields which are, however rotating with the light's frequency.

7.
J Phys Condens Matter ; 22(35): 355307, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-21403286

ABSTRACT

We report on the circular and linear photogalvanic effects caused by free-carrier absorption of terahertz radiation in electron channels on (001)-oriented and miscut silicon surfaces. The photocurrent behaviour upon variation of the radiation polarization state, wavelength, gate voltage, and temperature is studied. We present the microscopic and phenomenological theory of the photogalvanic effects, which describes well the experimental results. In particular, it is demonstrated that the circular (photon-helicity sensitive) photocurrent in silicon-based structures is of pure orbital nature originating from the quantum interference of different pathways contributing to the absorption of monochromatic radiation.

8.
Phys Rev Lett ; 102(15): 156602, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19518662

ABSTRACT

We study zero-bias spin separation in (Cd,Mn)Te/(Cd,Mg)Te diluted magnetic semiconductor structures. The spin current generated by electron gas heating under terahertz radiation is converted into a net electric current by applying an external magnetic field. The experiments show that the spin polarization of the magnetic ion system enhances drastically the conversion process due to giant Zeeman splitting of the conduction band and spin-dependent electron scattering on localized Mn(2+) ions.

9.
Phys Rev Lett ; 100(17): 176806, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18518322

ABSTRACT

Symmetry and spin dephasing in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect and time-resolved Kerr rotation. We show that magnetic field induced photogalvanic effect provides a tool to probe the symmetry of (110)-grown quantum wells. The photocurrent is only observed for asymmetric structures but vanishes for symmetric QWs. Applying Kerr rotation we prove that in the latter case the spin relaxation time is maximal; therefore, these structures set the upper limit of spin dephasing in GaAs QWs. We also demonstrate that structure inversion asymmetry can be controllably tuned to zero by variation of delta-doping layer positions.

10.
Phys Rev Lett ; 93(5): 056601, 2004 Jul 30.
Article in English | MEDLINE | ID: mdl-15323719

ABSTRACT

It has been shown that tunneling of spin-polarized electrons through a semiconductor barrier is accompanied by generation of an electric current in the plane of the interfaces. The direction of this interface current is determined by the spin orientation of the electrons and symmetry properties of the barrier; in particular, the current reverses its direction if the spin orientation changes the sign. Microscopic origin of such a "tunneling spin-galvanic" effect is the spin-orbit coupling-induced dependence of the barrier transparency on the spin orientation and the wave vector of electrons.

11.
Nature ; 417(6885): 153-6, 2002 May 09.
Article in English | MEDLINE | ID: mdl-12000954

ABSTRACT

There is much recent interest in exploiting the spin of conduction electrons in semiconductor heterostructures together with their charge to realize new device concepts. Electrical currents are usually generated by electric or magnetic fields, or by gradients of, for example, carrier concentration or temperature. The electron spin in a spin-polarized electron gas can, in principle, also drive an electrical current, even at room temperature, if some general symmetry requirements are met. Here we demonstrate such a 'spin-galvanic' effect in semiconductor heterostructures, induced by a non-equilibrium, but uniform population of electron spins. The microscopic origin for this effect is that the two electronic sub-bands for spin-up and spin-down electrons are shifted in momentum space and, although the electron distribution in each sub-band is symmetric, there is an inherent asymmetry in the spin-flip scattering events between the two sub-bands. The resulting current flow has been detected by applying a magnetic field to rotate an optically oriented non-equilibrium spin polarization in the direction of the sample plane. In contrast to previous experiments, where spin-polarized currents were driven by electric fields in semiconductor, we have here the complementary situation where electron spins drive a current without the need of an external electric field.

SELECTION OF CITATIONS
SEARCH DETAIL
...