Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(4-1): 044143, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978687

ABSTRACT

Crack-template-based transparent conductive films (TCFs) are promising kinds of junction-free, metallic network electrodes that can be used, e.g., for transparent electromagnetic interference shielding. Using image processing of published photos of TCFs, we have analyzed the topological and geometrical properties of such crack templates. Additionally, we analyzed the topological and geometrical properties of some computer-generated networks. We computed the electrical conductance of such networks against the number density of their cracks. Comparison of these computations with predictions of the two analytical approaches revealed the proportionality of the electrical conductance to the square root of the number density of the cracks was found, this being consistent with the theoretical predictions.

2.
Phys Rev E ; 107(3-1): 034105, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073027

ABSTRACT

We have studied the electrical conductance of two-dimensional (2D) random percolating networks of zero-width metallic nanowires (a mixture of rings and sticks). We took into account the nanowire resistance per unit length and the junction (nanowire-nanowire contact) resistance. Using a mean-field approximation (MFA) approach, we derived the total electrical conductance of these nanowire-based networks as a function of their geometrical and physical parameters. The MFA predictions have been confirmed by our Monte Carlo (MC) numerical simulations. The MC simulations were focused on the case when the circumferences of the rings and the lengths of the wires were equal. In this case, the electrical conductance of the network was found to be almost insensitive to the relative proportions of the rings and sticks, provided that the wire resistance and the junction resistance were equal. When the junction resistance dominated over the wire resistance, a linear dependency of the electrical conductance of the network on the proportions of the rings and sticks was observed.

3.
Phys Chem Chem Phys ; 24(19): 11812-11819, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35507328

ABSTRACT

The current interest in the study of the 2D systems of randomly deposited metallic nanowires is inspired by a combination of their high electrical conductivity with excellent optical transparency. Metallic nanowire networks show great potential for use in numerous technological applications. Although there are models that describe the electrical conductivity of the random nanowire networks through wire resistance, junction resistance, and number density of nanowires, they are either not rigorously justified or contain fitting parameters. We have proposed a model for the electrical conductivity in random metallic nanowire networks. We have mimicked such random nanowire networks as random resistor networks (RRN) produced by the homogeneous, isotropic, and random deposition of conductive zero-width sticks onto an insulating substrate. We studied the electrical conductivity of these RRNs using a mean-field approximation. An analytical dependency of the electrical conductivity on the main physical parameters (the number density and electrical resistances of these wires and of the junctions between them) has been derived. Computer simulations have been performed to validate our theoretical predictions. We computed the electrical conductivity of the RRNs against the number density of the conductive fillers for the junction-resistance-dominated case and for the case where the wire resistance and the junction resistance were equal. The results of the computations were compared with this mean-field approximation. Our computations demonstrated that our analytical expression correctly predicts the electrical conductivity across a wide range of number densities.

4.
Phys Rev E ; 105(4-1): 044129, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590647

ABSTRACT

We mimic nanorod-based transparent electrodes as random resistor networks (RRNs) produced by the homogeneous, isotropic, and random deposition of conductive zero-width sticks onto an insulating substrate. We suppose that the number density (the number of objects per unit area of the surface) of these sticks exceeds the percolation threshold, i.e., the system under consideration is a conductor. We computed the electrical conductivity of random resistor networks versus the number density of conductive fillers for the wire-resistance-dominated case, for the junction-resistance-dominated case, and for an intermediate case. We also offer a consistent continuous variant of the mean-field approach. The results of the RRN computations were compared with this mean-field approach. Our computations suggest that, for a qualitative description of the behavior of the electrical conductivity in relation to the number density of conductive wires, the mean-field approximation can be successfully applied when the number density of the fillers n>2n_{c}, where n_{c} is the percolation threshold. However, note the mean-field approach slightly overestimates the electrical conductivity. We demonstrate that this overestimate is caused by the junction potential distribution.

5.
Phys Rev E ; 104(5-1): 054104, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942691

ABSTRACT

The behavior of a system of two-dimensional elongated particles (discorectangles) packed in a slit between the two parallel walls was analyzed using a simulation approach. The packings were produced using the random sequential adsorption model with continuous positional and orientational degrees of freedom. The aspect ratio (length-to-width ratio, ɛ=l/d) of the particles was varied within the range ɛ∈[1;32] while the distance between the walls was varied within the range h/d∈[1;80]. The properties of deposits in jammed state [the coverage, the order parameter, and the long-range (percolation) connectivity between particles] were studied numerically. The values of ɛ and h significantly affected the structure of the packings and the percolation connectivity. Particularly, the observed nontrivial dependencies of the jamming coverage φ(ɛ) or φ(h) were explained by the interplay of the different geometrical factors related to confinement, particle orientation degrees of freedom and excluded volume effects.

6.
Phys Rev E ; 103(6-1): 062145, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271708

ABSTRACT

We mimic random nanowire networks by the homogeneous, isotropic, and random deposition of conductive zero-width sticks onto an insulating substrate. The number density (the number of objects per unit area of the surface) of these sticks is supposed to exceed the percolation threshold, i.e., the system under consideration is a conductor. To identify any current-carrying part (the backbone) of the percolation cluster, we have proposed and implemented a modification of the well-known wall follower algorithm-one type of maze solving algorithm. The advantage of the modified algorithm is its identification of the whole backbone without visiting all the edges. The complexity of the algorithm depends significantly on the structure of the graph and varies from O(sqrt[N_{V}]) to Θ(N_{V}). The algorithm has been applied to backbone identification in networks with different number densities of conducting sticks. We have found that (i) for number densities of sticks above the percolation threshold, the strength of the percolation cluster quickly approaches unity as the number density of the sticks increases; (ii) simultaneously, the percolation cluster becomes identical to its backbone plus simplest dead ends, i.e., edges that are incident to vertices of degree 1. This behavior is consistent with the presented analytical evaluations.

7.
Phys Rev E ; 103(4-1): 042113, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005923

ABSTRACT

Connectedness percolation phenomena in the two-dimensional packing of elongated particles (discorectangles) were studied numerically. The packings were produced using random sequential adsorption off-lattice models with preferential orientations of the particles along a given direction. The partial ordering was characterized by the order parameter S, with S=0 for completely disordered films (random orientation of particles) and S=1 for completely aligned particles along the horizontal direction x. The aspect ratio (length-to-width ratio) of the particles was varied within the range ɛ∈[1;100]. Analysis of connectivity was performed assuming a core-shell structure of the particles. The value of S affected the structure of the packings, the formation of long-range connectivity, and the behavior of the electrical conductivity. The effects can be explained by taking accounting of the competition between the particles' orientational degrees of freedom and excluded volume effects. For aligned deposition, anisotropy in the electrical conductivity was observed with the values along the alignment direction σ_{x} being larger than the values in the perpendicular direction σ_{y}. Anisotropy in the localization of the percolation threshold was also observed in finite-sized packings, but it disappeared in the limit of infinitely large systems.

8.
Phys Rev E ; 104(6-1): 064104, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030862

ABSTRACT

Relaxation of the packing of elongated particles (discorectangles) aligned on a line was studied numerically. The aspect ratio (length-to-width ratio) for the discorectangles was varied within the range ɛ∈[1;50]. The initial jamming (saturated) state was produced using the basic variant of the random sequential adsorption model with random positions and orientations of particles. The relaxation was performed by allowing rotational and translational diffusion motions of the particles while their centers remained located on the line. The effects of the aspect ratio ɛ on the kinetics of relaxation, the orientation order parameter, and the distribution function of the distances between nearest-neighbor discorectangles were analyzed. The transport properties of the resulting one-dimensional systems were also analyzed by using the diffusion of a tracer particle (random walker) between the nearest-neighbor discorectangles. In the relaxed states the anomalous diffusion was observed having a hopping exponent d_{w}>2 dependent upon ɛ.

9.
Phys Rev E ; 102(4-1): 042119, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212580

ABSTRACT

Using a computer simulation, we have studied the random sequential adsorption of stiff linear k-mers onto a square lattice. Each such particle occupies k adjacent lattice sites. During deposition, the two mutually perpendicular orientations of the particles are equiprobable, hence, a macroscopically isotropic monolayer is formed. However, this monolayer is locally anisotropic, since the deposited particles tend to form domains of particles with the same orientation. Using the "excluded area" concept, we have classified lattice sites into several types and examined how the fraction of each type of lattice site varies as the number of deposited particles increases. The behaviors of these quantities have allowed us to identify the following stages of domain formation: (i) the emergence of domain seeds, (ii) the filling of domains, and (iii) densification of the domains.

10.
Phys Rev E ; 102(2-1): 022133, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32942432

ABSTRACT

A computer simulation was used to study the random sequential adsorption of identical discorectangles onto a continuous plane. The problem was analyzed for a wide range of discorectangle aspect ratios (ɛ∈[1;100]). We studied the anisotropic deposition, i.e., the orientations of the deposited particles were uniformly distributed within some interval such that the particles were preferentially aligned along a given direction. The kinetics of the changes in the packing fraction found at different values of such the alignment are discussed. Partial ordering of the discorectangles significantly affected the packing fraction at the jamming state, φ_{j}, and shifted the cusps in the φ_{j}(ɛ) dependencies. The structure of the jammed state was analyzed using the adsorption of disks of different diameters into the porous space between the deposited discorectangles. The analysis of the connectivity between the discorectangles was performed assuming a core-shell structure of particles.

11.
Phys Rev E ; 102(1-1): 012128, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795031

ABSTRACT

The random sequential adsorption (RSA) of identical elongated particles (discorectangles) on a line ("Paris car parking problem") was studied numerically. An off-lattice model with continuous positional and orientational degrees of freedom was considered. The possible orientations of the discorectanles were restricted between θ∈[-θ_{m};θ_{m}] while the aspect ratio (length-to-width ratio) for the discorectangles was varied within the range ɛ∈[1;100]. Additionally, the limiting case ɛ=∞ (i.e., widthless sticks) was considered. We observed that the RSA deposition for the problem under consideration was governed by the formation of rarefied holes (containing particles oriented along a line) surrounded by comparatively dense stacks (filled with almost parallel particles oriented in the vertical direction). The kinetics of the changes of the order parameter and the packing density are discussed. Partial ordering of the discorectangles significantly affected the packing density at the jamming state, φ_{j}, and shifted the cusps in the φ_{j}(ɛ) dependencies. This can be explained by the effects on the competition between the particles' orientational degrees of freedom and the excluded volume effects.

12.
Phys Rev E ; 101(2-1): 022108, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168641

ABSTRACT

Using Monte Carlo simulation, we have studied the percolation of discorectangles. Also known as stadiums or two-dimensional spherocylinders, a discorectangle is a rectangle with semicircles at a pair of opposite sides. Scaling analysis was performed to obtain the percolation thresholds in the thermodynamic limits. We found that (i) for the two marginal aspect ratios ɛ=1 (disc) and ɛ→∞ (stick) the percolation thresholds coincide with known values within the statistical error and (ii) for intermediate values of ɛ the percolation threshold lies between the percolation thresholds for ellipses and rectangles and approaches the latter as the aspect ratio increases.

13.
Phys Rev E ; 100(4-1): 042139, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770898

ABSTRACT

Relaxation in a two-dimensional suspensions containing rods was studied by using dynamic Monte Carlo simulations. An off-lattice model with continuous positional and orientational degrees of freedom was considered. The initial state was produced by using a random sequential adsorption model. During the relaxation, the rods underwent translational and rotational Brownian motions. The simulations were run at different values of number density ρ (the number of rods per unit area) and of the initial orientation order parameter S_{i}. The rods were assumed to have core-shell structures. The evolutions of both the connectivity and the order parameter have revealed different relaxation behavior.

14.
Phys Rev E ; 99(5-1): 052135, 2019 May.
Article in English | MEDLINE | ID: mdl-31212574

ABSTRACT

The sedimentation of a two-dimensional suspension containing rods was studied by means of Monte Carlo (MC) simulations. An off-lattice model with continuous positional and orientational degrees of freedom was considered. The initial state before sedimentation was produced using a model of random sequential adsorption. During such sedimentation, the rods undergo translational and rotational Brownian motions. The MC simulations were run at different initial number densities (the numbers of rods per unit area), ρ_{i}, and sedimentation rates, u. For sediment films, the spatial distributions of the rods, the order parameters, and the electrical conductivities were examined. Different types of sedimentation-driven self-assembly and anisotropy of the electrical conductivity were revealed inside the sediment films. This anisotropy can be finely regulated by changes in the values of ρ_{i} and u.

15.
Phys Rev E ; 98(1-1): 012104, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110796

ABSTRACT

Numerical simulations by means of the Monte Carlo method have been performed to study the electrical properties of a two-dimensional composite filled with rodlike particles. The main goal was to study the effect of the alignment of such rods on the anisotropy of its electrical conductivity. A continuous model was used. In this model, the rods have zero-width (i.e., infinite aspect ratio) and they may intersect each other. To involve both the low conductive host matrix and highly conductive fillers (rods) in the consideration, a discretization algorithm based on the use of a supporting mesh was applied. The discretization is equivalent to the substitution of rods with the polyominoes. Once discretized, the Frank-Lobb algorithm was applied to evaluate the electrical conductivity. Our main findings are (i) the alignment of the rods essentially affects the electrical conductivity and its anisotropy, (ii) the discrete nature of computer simulations is crucial. For slightly disordered system, high electrical anisotropy was observed at small filler content, suggesting a method to enable the production of optically transparent and highly anisotropic conducting films.

16.
Phys Rev E ; 98(1-1): 012105, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110826

ABSTRACT

The electrical conductivity of two-dimensional films filled with rodlike particles (rods) was simulated by the Monte Carlo method. The main attention has been paid to the investigation of the effect of the rod alignment on the electrical properties of the films. Both continuous and lattice approaches were used. Intersections of particles were forbidden. Our main findings are (i) both models demonstrate similar behaviors, (ii) at low concentration of rods, both approaches lead to the same dependencies of the electrical conductivity on the concentration of the rods, (iii) the alignment of the rods essentially affects the electrical conductivity, (iv) at some concentrations of partially aligned rods, the films may be conducting only in one direction, and (v) the films may simultaneously be both highly transparent and electrically anisotropic.

17.
Phys Rev E ; 97(2-1): 022136, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548252

ABSTRACT

The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), p_{i}, and solvent evaporation rates, u. For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x, and vertical, y, directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u. The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of p_{i} and u.

18.
Phys Rev E ; 95(5-1): 052130, 2017 May.
Article in English | MEDLINE | ID: mdl-28618463

ABSTRACT

The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L, was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k-mers (determining the aspect ratio) was varied from 2 to 12. The k-mers oriented along the x and y directions (k_{x}-mers and k_{y}-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k-mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k-mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k-mers. For long k-mers (k≥6), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k-mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.

19.
Phys Rev E ; 94(4-1): 042112, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841486

ABSTRACT

The electrical conductivity of a monolayer produced by the random sequential adsorption (RSA) of linear k-mers (particles occupying k adjacent adsorption sites) onto a square lattice was studied by means of computer simulation. Overlapping with predeposited k-mers and detachment from the surface were forbidden. The RSA process continued until the saturation jamming limit, p_{j}. The isotropic (equiprobable orientations of k-mers along x and y axes) and anisotropic (all k-mers aligned along the y axis) depositions for two different models-of an insulating substrate and conducting k-mers (C model) and of a conducting substrate and insulating k-mers (I model)-were examined. The Frank-Lobb algorithm was applied to calculate the electrical conductivity in both the x and y directions for different lengths (k=1 - 128) and concentrations (p=0 - p_{j}) of the k-mers. The "intrinsic electrical conductivity" and concentration dependence of the relative electrical conductivity Σ(p) (Σ=σ/σ_{m} for the C model and Σ=σ_{m}/σ for the I model, where σ_{m} is the electrical conductivity of substrate) in different directions were analyzed. At large values of k the Σ(p) curves became very similar and they almost coincided at k=128. Moreover, for both models the greater the length of the k-mers the smoother the functions Σ_{xy}(p),Σ_{x}(p) and Σ_{y}(p). For the more practically important C model, the other interesting findings are (i) for large values of k (k=64,128), the values of Σ_{xy} and Σ_{y} increase rapidly with the initial increase of p from 0 to 0.1; (ii) for k≥16, all the Σ_{xy}(p) and Σ_{x}(p) curves intersect with each other at the same isoconductivity points; (iii) for anisotropic deposition, the percolation concentrations are the same in the x and y directions, whereas, at the percolation point the greater the length of the k-mers the larger the anisotropy of the electrical conductivity, i.e., the ratio σ_{y}/σ_{x} (>1).

20.
Eur Phys J E Soft Matter ; 39(2): 26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26920529

ABSTRACT

In our model, we simulate an experiment (D.J. Harris, H. Hu, J.C. Conrad, J.A. Lewis, Patterning colloidal films via evaporative lithography, Phys. Rev. Lett. 98, 148301 (2007)). A thin colloidal sessile droplet is allowed to dry out on a horizontal hydrophilic surface. A mask just above the droplet predominantly allows evaporation from the droplet free surface directly beneath the holes in the mask. We consider one special case, when the holes in the mask are arranged so that the system has rotational symmetry of order m . We use a speculative evaporative flux to mimic the real system. Advection, diffusion, and sedimentation are taken into account. FlexPDE is utilized to solve an advection-diffusion equation using the finite element method. The simulation demonstrates that the colloidal particles accumulate below the holes as the solvent evaporates. Diffusion can reduce this accumulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...