Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793687

ABSTRACT

Tomato fruit blotch virus (ToFBV) (Blunervirus solani, family Kitaviridae) was firstly identified in Italy in 2018 in tomato plants that showed the uneven, blotchy ripening and dimpling of fruits. Subsequent High-Throughput Sequencing (HTS) analysis allowed ToFBV to be identified in samples collected in Australia, Brazil, and several European countries, and its presence in tomato crops was dated back to 2012. In 2023, the virus was found to be associated with two outbreaks in Italy and Belgium, and it was included in the EPPO Alert list as a potential new threat for tomato fruit production. Many epidemiologic features of ToFBV need to be still clarified, including transmission. Aculops lycopersici Massee (Acariformes: Eriophyoidea), the tomato russet mite (TRM), is a likely candidate vector, since high population densities were found in most of the ToFBV-infected tomato cultivations worldwide. Real-time RT-PCR tests for ToFBV detection and TRM identification were developed, also as a duplex assay. The optimized tests were then transferred to an RT-ddPCR assay and validated according to the EPPO Standard PM 7/98 (5). Such sensitive, reliable, and validated tests provide an important diagnostic tool in view of the probable threat posed by this virus-vector system to solanaceous crops worldwide and can contribute to epidemiological studies by simplifying the efficiency of research. To our knowledge, these are the first molecular methods developed for the simultaneous detection and identification of ToFBV and TRM.


Subject(s)
Mites , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/virology , Plant Diseases/virology , Animals , Mites/virology , Plant Viruses/isolation & purification , Plant Viruses/genetics , Fruit/virology , Crops, Agricultural/virology , High-Throughput Nucleotide Sequencing/methods , Real-Time Polymerase Chain Reaction/methods
2.
J Insect Sci ; 23(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37721502

ABSTRACT

The predatory mites of the Phytoseiidae family are crucial biological control agents widely utilized in biological pest management targeting phytophagous mites and insects. Key factors in these control strategies are that phytoseiids must be able to find their main target prey and to maintain high populations and efficacy. To reduce expenses and time-consuming production methods of mass rearing of phytoseiids, pollen and other factitious (i.e., non-natural/nontarget) hosts need to be present as an alternative food for predatory mite populations. The mass-rearing possibilities of these predators on alternative food sources, such as astigmatid mites (i.e., house and stored mites) and pollen, must be evaluated not only by the cost of rearing settings but on the basis of their efficiency maintenance in killing prey. The pest kill rate (km) is the average daily lifetime killing of the pest by the natural enemy under consideration and can represent a useful indicator for phytoseiids efficacy to rank them as BCAs on the basis of their effective killing/predation on target prey. In this study, we evidenced that 2 astigmatid mites, Glycyphagus domesticus (De Geer) and Lepidoglyphus destructor (Schrank), and Quercus ilex L. pollen can be successfully adopted as substitute food sources for mass rearing of the phytoseiid Neoseiulus californicus (MgGregor); then, we determined that these populations of BCAs maintained a consistent km at new/first impact on the main target pest, Tetranychus urticae Koch.


Subject(s)
Acari , Quercus , Animals , Biological Control Agents , Food , Pollen , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...