Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37959719

ABSTRACT

A series of phosphorus and selenium peri-substituted acenaphthene species with the phosphino group oxidized by O, S, and Se has been isolated and fully characterized, including by single-crystal X-ray diffraction. The P(V) and Se(II) systems showed fluxional behavior in solution due to the presence of two major rotamers, as evidenced with solution NMR spectroscopy. Using Variable-Temperature NMR (VT NMR) and supported by DFT (Density Functional Theory) calculations and solid-state NMR, the major rotamers in the solid and in solution were identified. All compounds showed a loss of the through-space JPSe coupling observed in the unoxidized P(III) and Se(II) systems due to the sequestration of the lone pair of the phosphine, which has been previously identified as the major contributor to the coupling pathway.

2.
Inorg Chem ; 62(39): 16084-16100, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37722079

ABSTRACT

A series of peri-substituted acenaphthene-based phosphine selenoether bidentate ligands Acenap(iPr2P)(SeAr) (L1-L4, Acenap = acenaphthene-5,6-diyl, Ar = Ph, mesityl, 2,4,6-trisopropylphenyl and supermesityl) were prepared. The rigid acenaphthene framework induces a forced overlap of the phosphine and selenoether lone pairs, resulting in a large magnitude of through-space 4JPSe coupling, ranging from 452 to 545 Hz. These rigid ligands L1-L4 were used to prepare a series of selected late d-block metals, mercury, and borane complexes, which were characterized, including by multinuclear NMR and single-crystal X-ray diffraction. The Lewis acidic motifs (BH3, Mo(CO)4, Ag+, PdCl2, PtCl2, and HgCl2) bridge the two donor atoms (P and Se) in all but one case in the solid-state structures. Where the bridging motif contained NMR-active nuclei (11B, 107Ag, 109Ag, 195Pt, and 199Hg), JPM and JSeM couplings are observed directly, in addition to the altered JPSe in the respective NMR spectra. The solution NMR data are correlated with single-crystal diffraction data, and in the case of mercury(II) complexes, they are also correlated with the solid-state NMR data and coupling deformation density calculations. The latter indicate that the through-space interaction dominates in free L1, while in the L1HgCl2 complex, the main coupling pathway is via the metal atom and not through the carbon framework of the acenaphthene ring system.

SELECTION OF CITATIONS
SEARCH DETAIL
...