Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 10(7): 1024-31, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24983116

ABSTRACT

In 1/1 mass ratio mixtures made of single strand DNA and single-walled carbon nanotubes lyotropic nematic phases are formed. The process is assisted by segregative phase separation procedures. The liquid crystalline order occurring therein was confirmed by optical polarizing microscopy and zero-shear rheology. The resulting nematic droplets were dispersed in protein or cationic surfactant solutions, under appropriate pH and/or ionic strength conditions. The components of the hosting fluid(s) rapidly adsorb onto the droplets, form a permanent peel on their surface, and confine them. The peel resists osmotic gradients and has significant stability. The distribution of the species in the droplet and in the peel was determined by SEM. Data indicate that the peel contains protein or surfactant, depending on the titrant, when the core is rich in DNA and nanotubes. According to electron microscopy, nematic order in the droplets is partly retained.


Subject(s)
DNA, Single-Stranded/chemistry , Liquid Crystals/chemistry , Nanotubes, Carbon/chemistry , Osmotic Pressure
2.
J Colloid Interface Sci ; 355(2): 342-7, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21215413

ABSTRACT

Dispersions of single-walled and non-associated carbon nanotubes in aqueous lysozyme solution were investigated by analyzing the stabilizing effect of both protein concentration and pH. It was inferred that the medium pH, which significantly modifies the protein net charge and (presumably) conformation, modulates the mutual interactions with carbon nanotubes. At fixed pH, in addition, the formation of protein/nanotube complexes scales with increasing lysozyme concentration. Electrophoretic mobility, dielectric relaxation and circular dichroism were used to determine the above features. According to circular dichroism, lysozyme adsorbed onto nanotubes could essentially retain its native conformation, but the significant amount of free protein does not allow drawing definitive conclusions on this regard. The state of charge and charge distribution around nanotubes was inferred by combining electrophoretic mobility and dielectric relaxation methods. The former gives information on changes in the surface charge density of the complexes, the latter on modifications in the electrical double layer thickness around them. Such results are complementary each other and univocally indicate that some LYS molecules take part to binding. Above a critical protein/nanotube mass ratio, depletion phenomena were observed. They counteract the stabilization mechanism, with subsequent nanotube/nanotube aggregation and phase separation. Protein-based depletion phenomena are similar to formerly reported effects, observed in aqueous surfactant systems containing carbon nanotubes.


Subject(s)
Muramidase/chemistry , Nanotubes, Carbon/chemistry , Adsorption , Animals , Chickens , Circular Dichroism , Electrophoresis , Hydrogen-Ion Concentration , Molecular Conformation , Muramidase/metabolism , Solutions , Surface Properties , Surface-Active Agents/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...