Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(9): 6775-6802, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35482677

ABSTRACT

d-Serine is a coagonist of the N-methyl d-aspartate (NMDA) receptor, a key excitatory neurotransmitter receptor. In the brain, d-serine is synthesized from its l-isomer by serine racemase and is metabolized by the D-amino acid oxidase (DAO, DAAO). Many studies have linked decreased d-serine concentration and/or increased DAO expression and enzyme activity to NMDA dysfunction and schizophrenia. Thus, it is feasible to employ DAO inhibitors for the treatment of schizophrenia and other indications. Powered by the Schrödinger computational modeling platform, we initiated a research program to identify novel DAO inhibitors with the best-in-class properties. The program execution leveraged an hDAO FEP+ model to prospectively predict compound potency. A new class of DAO inhibitors with desirable properties has been discovered from this endeavor. Our modeling technology on this program has not only enhanced the efficiency of structure-activity relationship development but also helped to identify a previously unexplored subpocket for further optimization.


Subject(s)
N-Methylaspartate , Schizophrenia , D-Amino-Acid Oxidase/metabolism , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Serine/metabolism , Structure-Activity Relationship
2.
J Med Chem ; 63(24): 15821-15851, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33290061

ABSTRACT

Acid ceramidase (AC) is a cysteine hydrolase that plays a crucial role in the metabolism of lysosomal ceramides, important members of the sphingolipid family, a diversified class of bioactive molecules that mediate many biological processes ranging from cell structural integrity, signaling, and cell proliferation to cell death. In the effort to expand the structural diversity of the existing collection of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides were designed and synthesized. Herein, we present the chemical optimization of our initial hits, 2-oxo-4-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 8a and 2-oxo-5-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 12a, which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo-N-pentyl-oxazole-3-carboxamide 32b as a potent AC inhibitor with optimal physicochemical and metabolic properties, showing target engagement in human neuroblastoma SH-SY5Y cells and a desirable pharmacokinetic profile in mice, following intravenous and oral administration. 32b enriches the arsenal of promising lead compounds that may therefore act as useful pharmacological tools for investigating the potential therapeutic effects of AC inhibition in relevant sphingolipid-mediated disorders.


Subject(s)
Acid Ceramidase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Oxazolone/chemistry , Acid Ceramidase/metabolism , Administration, Oral , Animals , Binding Sites , Cell Line, Tumor , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , Inhibitory Concentration 50 , Kinetics , Male , Mice , Mice, Inbred C57BL , Microsomes/metabolism , Molecular Docking Simulation , Oxazolone/metabolism , Oxazolone/pharmacokinetics , Solubility , Structure-Activity Relationship
3.
J Med Chem ; 63(7): 3634-3664, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32176488

ABSTRACT

Sphingolipids (SphLs) are a diverse class of molecules that are regulated by a complex network of enzymatic pathways. A disturbance in these pathways leads to lipid accumulation and initiation of several SphL-related disorders. Acid ceramidase is one of the key enzymes that regulate the metabolism of ceramides and glycosphingolipids, which are important members of the SphL family. Herein, we describe the lead optimization studies of benzoxazolone carboxamides resulting in piperidine 22m, where we demonstrated target engagement in two animal models of neuropathic lysosomal storage diseases (LSDs), Gaucher's and Krabbe's diseases. After daily intraperitoneal administration at 90 mg kg-1, 22m significantly reduced the brain levels of the toxic lipids glucosylsphingosine (GluSph) in 4L;C* mice and galactosylsphingosine (GalSph) in Twitcher mice. We believe that 22m is a lead molecule that can be further developed for the correction of severe neurological LSDs where GluSph or GalSph play a significant role in disease pathogenesis.


Subject(s)
Acid Ceramidase/antagonists & inhibitors , Benzoxazoles/pharmacology , Enzyme Inhibitors/pharmacology , Administration, Oral , Animals , Benzoxazoles/administration & dosage , Benzoxazoles/chemical synthesis , Benzoxazoles/pharmacokinetics , Brain/metabolism , Cell Line, Tumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Gaucher Disease/enzymology , Gaucher Disease/metabolism , Humans , Leukodystrophy, Globoid Cell/enzymology , Leukodystrophy, Globoid Cell/metabolism , Male , Mice , Molecular Structure , Psychosine/analogs & derivatives , Psychosine/metabolism , Structure-Activity Relationship
4.
Chem Commun (Camb) ; 53(95): 12814-12817, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29143042

ABSTRACT

N-Acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is a membrane-associated zinc enzyme that catalyzes the hydrolysis of N-acylphosphatidylethanolamines (NAPEs) into fatty acid ethanolamides (FAEs). Here, we describe the identification of the first small-molecule NAPE-PLD inhibitor, the quinazoline sulfonamide derivative 2,4-dioxo-N-[4-(4-pyridyl)phenyl]-1H-quinazoline-6-sulfonamide, ARN19874.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Phospholipase D/antagonists & inhibitors , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Small Molecule Libraries/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Phospholipase D/metabolism , Quinazolines/chemistry , Quinazolinones , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry
5.
ChemMedChem ; 12(16): 1380-1389, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28665505

ABSTRACT

A number of trimethoxybenzoic acid anilides, previously studied as permeability glycoprotein (P-gp) modulators, were screened with the aim of identifying new anticancer agents. One of these compounds, which showed antiproliferative activity against resistant MCF-7 cell line, was selected as the hit structure. Replacement of the trimethoxybenzoyl moiety with a nicotinoyl group, in order to overcome solubility issues, led to a new series of N-biphenyl nicotinoyl anilides, among which a nitro derivative, N-(3',5'-difluoro-3-nitro-[1,1'-biphenyl]-4-yl)nicotinamide (3), displayed antiproliferative activity against MCF-7 and MDA-MB-231 cells in the nanomolar range. The search for a bioisostere of the nitro group led to nitrile analogue N-(3-cyano-4'-fluoro-[1,1'-biphenyl]-4-yl)nicotinamide (36), which shows a strong increase in activity against MCF-7 and MDA-MB-231 cells. Compound 36 induced a dose-dependent accumulation of G2 - and M-phase MCF-7 cell populations, and a decrease in S-phase cells. Relative to vinblastine, a well-known potent antimitotic agent, compound 36 also induced G1 -phase arrest at low doses (20-40 nm), but did not inhibit in vitro tubulin polymerization.


Subject(s)
Niacinamide/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biphenyl Compounds/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , MCF-7 Cells , Niacinamide/pharmacology , Structure-Activity Relationship , Tubulin/metabolism
6.
Chem Biol Drug Des ; 88(6): 820-831, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27331911

ABSTRACT

In a recent investigation carried out on a panel of trimethoxybenzanilides, we showed that the formation of an intramolecular hydrogen bond is a key element for tuning P-gp inhibitory activity. In this study, we designed new structurally simplified trimethoxy benzamides (5-17, Table ) with the aim to uncover the minimal molecular requirements needed for P-gp inhibition. The new prepared smaller-sized compounds exhibited IC50 in the low micromolar range. The combined use of NMR and DFT studies suggested that molecular flatness is causatively related to the P-gp inhibition. Our results clearly pointed out that concerted theoretical and experimental approaches herein presented might be very helpful in addressing the design of structurally simplified and highly efficient compounds biasing P-gp protein.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Benzamides/chemical synthesis , Benzamides/pharmacology , Proton Magnetic Resonance Spectroscopy/methods , Animals , Benzamides/chemistry , Dogs , Drug Design , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Spectrometry, Mass, Electrospray Ionization
7.
J Med Chem ; 57(15): 6403-18, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25093931

ABSTRACT

One of the principal reasons for the chemotherapy failure is the overexpression of drug efflux pumps, ABCB1 (also known as MDR1 or P-gp) and ABCC1 (also known as MRP1), whose inhibition remains a priority to circumvent drug resistance. We have recently shown a clear trend between lipophilicity and P-glycoprotein inhibitory activity for a class of galloyl-based modulators targeting P-glycoprotein and MRP1. Herein we report a new series of polymethoxy benzamides, whose lipophilicity was modulated through the establishment of an intramolecular hydrogen bond (IMHB) which allows reaching of P-gp inhibitory activity at the submicromolar IC50 level. The present study provides a strong rationale for candidates in the presence of IMHB as a key element for a high P-gp inhibitory activity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Anilides/chemistry , Antineoplastic Agents/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anilides/chemical synthesis , Anilides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cell Line, Tumor , Cell Membrane Permeability , Dogs , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Drug Synergism , Fluoresceins/metabolism , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Madin Darby Canine Kidney Cells , Molecular Dynamics Simulation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...