Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 655: 414-422, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30472643

ABSTRACT

Chromated copper arsenates (CCA) have been extensively used as wood impregnation agents in Europe and North America. Today, CCA contaminated sites remain abundant and pose environmental risks that need to be properly managed. Using a TRIAD approach that combined chemical, ecotoxicological and ecological assessment of soil quality, we investigated the abilities of biochar and zero-valent iron (ZVI) to remediate CCA contaminated soil in a microcosm experiment. Soil samples from a highly contaminated CCA site (1364, 1662 and 540 µg g-1 of As, Cu and Cr, respectively) were treated with two different biochars (fine and coarse particle size; 1% w w-1) and ZVI (5% w w-1), both as sole and as combined treatments, and incubated for 56 days at 15 °C. In general, bioavailable As (Asbio) and Cu (Cubio) determined by whole-cell bacterial bioreporters corresponded well to water-extractable As and Cu (Aswater and Cuwater). However, in biochar treatments, only Cubio and not Cuwater was significantly reduced. In contrast, under ZVI treatments only Cuwater and not Cubio was reduced, demonstrating the value of complementing analytical with bacterial bioreporter measurements to infer bioavailability of elements to soil microorganisms. The combined fine particle size biochar and ZVI treatment effectively reduced water extractable concentrations of Cr, Cu, and As on site by 45%, 45% and 43% respectively, and led to the highest ecological recovery of the soil bacterial community, as measured using the [3H]leucine incorporation technique. We conclude that the combined application of biochar and ZVI as soil amendments holds promise for in-situ stabilization of CCA contaminated sites.


Subject(s)
Arsenates/analysis , Charcoal/chemistry , Iron/chemistry , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Denmark , Environmental Monitoring , Microbiota
2.
Sci Total Environ ; 652: 744-754, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30380482

ABSTRACT

The physico-chemical factors affecting the distribution, behavior and speciation of chromium (Cr), copper (Cu) and arsenic (As) was investigated at a former wood impregnation site (Fredensborg, Denmark). Forty soil samples were collected and extracted using a sequential extraction technique known as the Chemometric Identification of Substrates and Element Distributions (CISED) and a multivariate statistical tool (redundancy analysis) was applied. CISED data was linked to water-extractable Cr, Cu and As and bioavailable Cu as determined by a whole-cell bacterial bioreporter assay. Results showed that soil pH significantly affected the solid phase distribution of all three elements on site. Additionally, elements competing for binding sites, Ca, Mg and Mn in the case of Cu, and P, in the case of As, played a major role in the distribution of these elements in soil. Element-specific distributions were observed amongst the six identified soil phases including residual pore salts, exchangeable, carbonates (tentative designation), Mn-Al oxide, amorphous Fe oxide, and crystalline Fe oxide. While Cr was strongly bound to non-extractable crystalline Fe oxide in the oxic top soil, Cu and notably, As were associated with readily extractable phases, suggesting that Cu and As, and not Cr, constitute the highest risk to environmental and human health. However, bioavailable Cu did not significantly correlate with CISED identified soil phases, suggesting that sequential extraction schemes such as CISED may not be ideally suited for inferring bioavailability to microorganisms in soil and supports the integration of receptor-specific bioavailability tests into risk assessments as a complement to chemical methods.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Arsenic , Biological Assay , Chromium , Copper , Denmark , Environmental Pollution , Models, Chemical , Risk Assessment , Soil
3.
Sci Total Environ ; 656: 512-520, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30529954

ABSTRACT

Antibiotic resistance genes (ARGs) constitute emerging environmental pollutants and pose risks to public health. Toxic metals are known to select for metal-resistant bacteria in metal-contaminated soils, but there is growing concern that metal contaminants can also act as co-selective agents thereby causing environmental proliferation of antibiotic resistance. In this study, we quantified ARGs and selected mobile genetic elements (MGEs) known to constitute potential ARG hosts in 50 archived urban and suburban soils from the Belfast metropolitan area using a high-throughput qPCR ARG chip. ARG prevalence was linked to concentrations of individual metals and a soil metal toxicity index calculated based on the relative toxicity of different metals to soil microbial processes. A total of 164 ARGs were detected across the 50 soils analyzed with an average absolute abundance of 3.4 × 107 ARG gene copies per gram of soil. A significant correlation between abundance of ARGs and MGEs was observed, suggesting the importance of horizontal gene transfer for ARG dissemination. Network analysis revealed significant co-occurrence patterns between specific metals (As, Cd, Co, Cr, Cu. Hg, Ni and Zn) and associated ARGs. Path analysis further indicated that the soil metal toxicity index significantly affected the number of detected ARGs (λ = 0.32, P < 0.001) and the abundance of metal co-occurring ARGs (λ = 0.612, P < 0.001) via effects on MGEs. Collectively, our results indicate a role of soil metals in co-selection of ARGs and MGEs in urban and semi-urban soils and suggest a risk for environmental ARG dissemination via horizontal gene transfer.


Subject(s)
Drug Resistance, Microbial/genetics , Environmental Monitoring , Interspersed Repetitive Sequences/genetics , Soil Microbiology , Soil Pollutants/adverse effects , Cities , Northern Ireland , Selection, Genetic
4.
Environ Sci Technol ; 53(2): 798-807, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30532956

ABSTRACT

Arsenic (As) is a ubiquitous toxic element adversely affecting human health. Microbe-mediated cycling of As is largely mediated by detoxification and energy metabolism in microorganisms. We here report the development of a novel high-throughput qPCR (HT-qPCR) chip (AsChip) for comprehensive profiling of genes involved in microbial As cycling (here collectively termed "As genes"). AsChip contained 81 primer sets targeting 19 As genes and the 16S rRNA gene as a reference gene. Gene amplicon sequencing showed high identity (>96%) of newly designed primers corresponding to their targets. AsChip displayed high sensitivity (plasmid template serial dilution test; r = -0.99), with more than 96% of all PCR assays yielding true positive signals. R2 coefficients for standard curves and PCR amplification efficiencies averaged 0.98 and 0.99, respectively. A high correlation between CT values obtained by AsChip and conventional qPCR was obtained ( r = 0.962, P < 0.001). Finally, we successfully applied AsChip on soil samples from a chromium-copper-arsenic-contaminated field site and identified diverse As genes with total abundance average of 0.4 As gene copies per 16S rRNA. Our results indicate that AsChip constitutes a robust tool for comprehensive quantitative profiling of As genes in environmental samples.


Subject(s)
Arsenic , Humans , Oligonucleotide Array Sequence Analysis , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction
5.
Front Microbiol ; 7: 1363, 2016.
Article in English | MEDLINE | ID: mdl-27660624

ABSTRACT

The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.

6.
Front Microbiol ; 6: 1436, 2015.
Article in English | MEDLINE | ID: mdl-26733977

ABSTRACT

Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subjected to one of four treatments: inoculation with rhizosphere soil from a willow that grew well (LA) or sub-optimally (SM) in highly contaminated soils or with bulk soil in which the planted willow had died (DE) or no inoculation (CO). Samples were taken from the starting inoculum, at the beginning of the experiment (T0) and after 100 days of growth (TF). Short hypervariable regions of archaeal/bacterial 16S rRNA genes and the fungal ITS region were amplified from soil DNA extracts and sequenced on the Illumina MiSeq. Willow growth was monitored throughout the experiment, and plant biomass was measured at TF. CO willows were significantly smaller throughout the experiment, while DE willows were the largest at TF. Microbiomes of different treatments were divergent at T0, but for most samples, had converged on highly similar communities by TF. Willow biomass was more strongly linked to overall microbial community structure at T0 than to microbial community structure at TF, and the relative abundance of many genera at T0 was significantly correlated to final willow root and shoot biomass. Although microbial communities had mostly converged at TF, lasting differences in willow growth were observed, probably linked to differences in T0 microbial communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...