Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(4): e0230323, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411953

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.


Subject(s)
Pseudomonas Infections , Tobramycin , Humans , Tobramycin/pharmacology , Pseudomonas aeruginosa , Membrane Fluidity , Sigma Factor/genetics , Sigma Factor/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Pseudomonas Infections/drug therapy , Biofilms , Homeostasis
2.
Bioorg Med Chem Lett ; 96: 129517, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37838341

ABSTRACT

The search for new classes of antibiotics is a real concern of public health due to the emergence of multi-resistant bacteria strains. We report herein the synthesis and characterization of a new series of 13 molecules combining isoxazoline/isoxazole sulfonamides and hydrazides motives. These molecules were obtained according to a costless eco-friendly procedure, and a one-pot three-step cascade synthesis under ultrasonic cavitation. All the synthesized compounds were fully characterized by HRMS, 1H NMR, 13C NMR spectroscopy and HPLC analysis. These new molecules have been evaluated against the major human opportunistic pathogen Pseudomonas aeruginosa to determine their potential to affect its growth and biofilm formation or dispersion. Two derivatives (5a and 6a) demonstrated their ability to destabilize a mature biofilm by about 50 % within 24 h. This may pave the way to the development of a new class of compounds affecting biofilm, which are easy to synthesize according to green chemistry processes.


Subject(s)
Biofilms , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sulfanilamide , Sulfonamides/pharmacology
3.
Adv Exp Med Biol ; 1386: 147-184, 2022.
Article in English | MEDLINE | ID: mdl-36258072

ABSTRACT

Bacteria sense their environment via the cell envelope, which in Gram-negative bacteria comprises the outer membrane, the periplasmic space, and the inner membrane. Pseudomonas aeruginosa is an opportunistic pathogen which is exposed to different cell wall stresses imposed by exposure to antibiotics, osmotic pressure, and long-time colonization of host tissues such as the lung in cystic fibrosis patients. In response to these stresses, P. aeruginosa is able to respond by establishing a cell envelope stress response involving different regulatory pathways including the extra-cytoplasmic sigma factors AlgU, SigX, and SbrI and other two-component sensor/response regulators and effectors. This chapter aims to review the different factors leading to the activation of the cell envelope stress response in P. aeruginosa and the genetic determinants involved in this response, which is crucial for the survival of the bacterium upon exposure to different stressful conditions.


Subject(s)
Cystic Fibrosis , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cystic Fibrosis/microbiology , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics , Sigma Factor/genetics , Sigma Factor/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...