Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37681922

ABSTRACT

Oxidative damage and inflammation are among the very significant aspects interrelated with cancer and other degenerative diseases. In this study, we investigated the biological activities of a 25 kDa protease (SH21) that was purified from Bacillus siamensis. SH21 exhibited very powerful antioxidant and reactive oxygen species (ROS) generation inhibition activity in a dose-dependent approach. The mRNA and protein levels of antioxidant enzymes such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (GPx-1) were enhanced in the SH21-treated sample. SH21 also increased the transcriptional and translational activities of NF-E2-related factor 2 (Nrf2) with the subsequent development of detoxifying enzyme heme oxygenase-1 (HO-1). In addition, SH21 showed potential anti-inflammatory activity via inhibition of nitric oxide (NO) and proinflammatory cytokines, such as TNF-α, IL-6, and IL-1ß, production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. At concentrations of 60, 80, and 100 µg/mL, SH21 potentially suppressed nitric oxide synthase (iNOS) and cytokine gene expressions. Furthermore, SH21 significantly released lactate dehydrogenase (LDH) enzyme in cancer cell supernatant in a concentration-dependent manner and showed strong activity against three tested cancer cell lines, including HL-60, A549, and Hela. Our results suggest that SH21 has effective antioxidant, anti-inflammatory, and anticancer effects and could be an excellent therapeutic agent against inflammation-related diseases.


Subject(s)
NF-E2-Related Factor 2 , Peptide Hydrolases , Humans , Endopeptidases , Heme Oxygenase-1 , Inflammation/drug therapy , Oxidative Stress , Signal Transduction
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982846

ABSTRACT

Proteases are important enzymes that are engaged in a variety of essential physiological functions and have a significant possible use in industrial applications. In this work, we reported the purification and biochemical characterization of a detergent stable, antimicrobial, and antibiofilm potential protease (SH21) produced by Bacillus siamensis CSB55 isolated from Korean fermented vegetable kimchi. SH21 was purified to obtain homogeneity via ammonium sulfate precipitation (40-80%), Sepharose CL-6B, and Sephadex G-75 column. By analyzing the SDS-PAGE and zymogram, it was determined that the molecular weight was around 25 kDa. The enzyme activity was almost completely inhibited in the presence of PMSF and DFP, which indicated that it was a member of the serine protease family. SH21 showed excellent activity with a broad range of pH and temperature, with its maximum pH of 9.0 and temperature of 55 °C. The enzyme had estimated Km and Vmax values of 0.197 mg/mL and 1.22 × 103 U/mg, respectively. In addition, it preserved good activity in the presence of different organic solvents, surfactants, and other reagents. This enzyme showed good antimicrobial activity that was evaluated by MIC against several pathogenic bacteria. Furthermore, it exhibited strong antibiofilm activity as determined by MBIC and MBEC assay and degraded the biofilms, which were analyzed by confocal microscopic study. These properties established that SH21 is a potent alkaline protease that can be used in industrial and therapeutic applications.


Subject(s)
Anti-Infective Agents , Bacillus , Detergents/pharmacology , Detergents/chemistry , Endopeptidases/chemistry , Bacillus/metabolism , Serine Proteases/metabolism , Temperature , Bacterial Proteins/chemistry , Hydrogen-Ion Concentration , Enzyme Stability
3.
Bioprocess Biosyst Eng ; 46(6): 813-828, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36997801

ABSTRACT

Nowadays, the abuse of antibiotics has led to the rise of multi-drug-resistant bacteria. Antimicrobial peptides (AMPs), with broad-spectrum antimicrobial activity have attracted considerable attention as possible alternatives to traditional antibiotics. In this work, we aimed to evaluate the antimicrobial and anti-biofilm activity of an antimicrobial peptide designed as YS12 derived from Bacillus velezensis CBSYS12. The strain CBSYS12 was isolated from Korean food kimchi and purified followed by ultrafiltration and sequential chromatographic methodology. Hereafter, Tricine SDS-PAGE revealed a single protein band of around 3.3 kDa that was further confirmed in situ inhibitory activity of the gel. A similar molecular weight (~ 3348.4 Da) protein also appeared in MALDI-TOF confirming the purity and homogeneity of peptide YS12. Intriguingly, YS12 revealed a strong antimicrobial activity with a minimum inhibitory concentration (MIC) value ranging from 6 to 12 µg/ml for both Gram-positive and Gram-negative bacteria, such as E. coli, P. aeruginosa, MRSA 4-5, VRE 82, and M. smegmatis. We also determined the mode of action of the peptide against pathogenic microorganisms using different fluorescent dyes. In addition, the anti-biofilm assay demonstrated that peptide YS12 was able to inhibit biofilm formation  around 80% for both bacterial strains E. coli and P. aeruginosa at 80 µg/ml. Notably, YS12 exhibited a greater biofilm eradication activity than commercial antibiotics. In summary, our study proposed that peptide YS12 may be used as a promising therapeutic agent to overcome drug and biofilm-related infections.


Subject(s)
Anti-Infective Agents , Bacillus , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Escherichia coli , Gram-Negative Bacteria , Bacteria , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Biofilms
4.
Epidemiologia (Basel) ; 2(1): 84-94, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-36417192

ABSTRACT

BACKGROUND: Chikungunya is a vector-borne disease, mostly present in tropical and subtropical regions. The virus is spread by Ae. aegypti and Ae. albopictus mosquitos and symptoms include high fever to severe joint pain. Dhaka, Bangladesh, suffered an outbreak of chikungunya in 2017 lasting from April to September. With the goal of reducing cases, social media was at the forefront during this outbreak and educated the public about symptoms, prevention, and control of the virus. Popular web-based sources such as the top dailies in Bangladesh, local news outlets, and Facebook spread awareness of the outbreak. OBJECTIVE: This study sought to investigate the role of social and mainstream media during the chikungunya epidemic. The study objective was to determine if social media can improve awareness of and practice associated with reducing cases of chikungunya. METHODS: We collected chikungunya-related information circulated from the top nine television channels in Dhaka, Bangladesh, airing from 1st April-20th August 2017. All the news published in the top six dailies in Bangladesh were also compiled. The 50 most viewed chikungunya-related Bengali videos were manually coded and analyzed. Other social media outlets, such as Facebook, were also analyzed to determine the number of chikungunya-related posts and responses to these posts. RESULTS: Our study showed that media outlets were associated with reducing cases of chikungunya, indicating that media has the potential to impact future outbreaks of these alpha viruses. Each media outlet (e.g., web, television) had an impact on the human response to an individual's healthcare during this outbreak. CONCLUSIONS: To prevent future outbreaks of chikungunya, media outlets and social media can be used to educate the public regarding prevention strategies such as encouraging safe travel, removing stagnant water sources, and assisting with tracking cases globally to determine where future outbreaks may occur.

SELECTION OF CITATIONS
SEARCH DETAIL
...