Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(12): e0207999, 2018.
Article in English | MEDLINE | ID: mdl-30513101

ABSTRACT

The transgenic strain of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wied.) VIENNA 8 1260, developed from the classical genetic sexing strain VIENNA 8, has two molecular markers that exhibit red fluorescence in the body and green fluorescence in testicles and sperm. These traits offer a precise tool to discriminate between mass-reared sterile males and wild fertile males, and they could potentially increase the effectiveness of control programs for this pest. To assess the risk of horizontal transfer of the fluorescence transgenes in natural ecosystems, we used the VIENNA 8 1260 strain and the medfly parasitoid Fopius ceratitivorus. The fluorescence signal and the inheritance of the fluorescence gene markers were monitored for over 16 generations (about two years) in both species using fluorescence microscopy and a PCR-based assay. The PCR analysis was performed in four independent laboratories. Both fluorescence microscopy and PCR analysis indicated that no horizontal gene transfer of the DsRed transgene occurred during 16 generations of medfly parasitoid rearing under experimental conditions.


Subject(s)
Animals, Genetically Modified/genetics , Ceratitis capitata/genetics , Gene Transfer, Horizontal , Host-Parasite Interactions/genetics , Hymenoptera/genetics , Animals , Animals, Genetically Modified/parasitology , Ceratitis capitata/parasitology , Female , Male , Pest Control, Biological/methods , Transgenes/genetics
2.
PLoS One ; 11(8): e0160232, 2016.
Article in English | MEDLINE | ID: mdl-27537351

ABSTRACT

The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and environment-friendly manner. The development of genetic sexing strains (GSS), such as the Vienna 8 strain, has been played a major role in increasing the efficacy and reducing the cost of SIT programs. However, mass rearing, extensive inbreeding, possible bottleneck phenomena and hitch-hiking effects might pose major risks for deterioration and loss of important genetic characteristics of domesticated insect. In the present study, we present a modified procedure to cryopreserve the embryos of the medfly Vienna 8 GSS based on vitrification and used this strain as insect model to assess the impact of the cryopreservation process on the genetic structure of the cryopreserved insects. Forty-eight hours old embryos, incubated at 24°C, were found to be the most suitable developmental stage for cryopreservation treatment for high production of acceptable hatch rate (38%). Our data suggest the absence of any negative impact of the cryopreservation process on egg hatch rate, pupation rates, adult emergence rates and stability of the temperature sensitive lethal (tsl) character on two established cryopreserved lines (flies emerged from cryopreserved embryos), named V8-118 and V8-228. Taken together, our study provides an optimized procedure to cryopreserve the medfly Vienna 8 GSS and documents the absence of any negative impact on the genetic structure and quality of the strain. Benefits and sceneries for utilization of this technology to support operational SIT projects are discussed in this paper.


Subject(s)
Ceratitis capitata/embryology , Cryopreservation/methods , Animals , Embryo, Nonmammalian , Female , Larva , Male , Mitochondria , Pupa
SELECTION OF CITATIONS
SEARCH DETAIL
...