Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 23(5): 1529-36, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23352267

ABSTRACT

The bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) are essential enzymes that control the topological state of DNA during replication. The high degree of conservation in the ATP-binding pockets of these enzymes make them appealing targets for broad-spectrum inhibitor development. A pyrrolopyrimidine scaffold was identified from a pharmacophore-based fragment screen with optimization potential. Structural characterization of inhibitor complexes conducted using selected GyrB/ParE orthologs aided in the identification of important steric, dynamic and compositional differences in the ATP-binding pockets of the targets, enabling the design of highly potent pyrrolopyrimidine inhibitors with broad enzymatic spectrum and dual targeting activity.


Subject(s)
DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Topoisomerase IV/chemistry , Drug Design , Models, Molecular , Pyrimidines/chemistry , Pyrroles/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 23(5): 1537-43, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23294697

ABSTRACT

The structurally related bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as prime candidates for the development of broad spectrum antibacterial agents. However, GyrB/ParE targeting antibacterials with spectrum that encompasses robust Gram-negative pathogens have not yet been reported. Using structure-based inhibitor design, we optimized a novel pyrrolopyrimidine inhibitor series with potent, dual targeting activity against GyrB and ParE. Compounds were discovered with broad antibacterial spectrum, including activity against Pseudomonas aeruginosa, Acinetobacter baumannii and Escherichia coli. Herein we describe the SAR of the pyrrolopyrimidine series as it relates to key structural and electronic features necessary for Gram-negative antibacterial activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , DNA Gyrase/chemistry , DNA Topoisomerase IV/chemistry , Drug Design , Humans , Pyrimidines/chemistry , Pyrroles/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry
3.
PLoS One ; 8(12): e84409, 2013.
Article in English | MEDLINE | ID: mdl-24386374

ABSTRACT

Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Drug Design , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Bacteria/enzymology , DNA Gyrase/chemistry , DNA Topoisomerase IV/chemistry , Drug Resistance, Bacterial/drug effects , Female , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Mice , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , Topoisomerase II Inhibitors/chemical synthesis
4.
Methods Mol Biol ; 841: 1-27, 2012.
Article in English | MEDLINE | ID: mdl-22222446

ABSTRACT

Access to detailed three-dimensional structural information on protein drug targets can streamline many aspects of drug discovery, from target selection and target product profile determination, to the discovery of novel molecular scaffolds that form the basis of potential drugs, to lead optimization. The information content of X-ray crystal structures, as well as the utility of structural methods in supporting the different phases of the drug discovery process, are described in this chapter.


Subject(s)
Computational Biology , Drug Discovery , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Proteins/antagonists & inhibitors
5.
Methods Mol Biol ; 841: 251-66, 2012.
Article in English | MEDLINE | ID: mdl-22222456

ABSTRACT

Water plays a crucial role in the mediation of protein-ligand interactions, as underscored by the fact that most X-ray crystal structures (of sufficient resolution) of protein-ligand complexes possess water molecules at the protein-ligand interface. In this chapter, the accuracy and reliability of ordered waters observed in crystal structures is discussed. Additionally, the thermodynamic aspects of the inclusion of water in ligand binding to proteins is described, with the goal of providing practical guidelines for dealing with ordered water molecules during structure-guided lead optimization.


Subject(s)
Drug Design , Water/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Proteins/chemistry , Solvents/chemistry , Thermodynamics
6.
Curr Chem Genomics ; 4: 19-26, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20556201

ABSTRACT

Trytophan Hydroxylase Type I (TPH1), most abundantly expressed in the gastrointestinal tract, initiates the synthesis of serotonin by catalyzing hydroxylation of tryptophan in the presence of biopterin and oxygen. We have previously described three series of novel, periphery-specific TPH1 inhibitors that selectively deplete serotonin in the gastrointestinal tract. We have now determined co-crystal structures of TPH1 with three of these inhibitors at high resolution. Analysis of the structural data showed that each of the three inhibitors fills the tryptophan binding pocket of TPH1 without reaching into the binding site of the cofactor pterin, and induces major conformational changes of the enzyme. The enzyme-inhibitor complexes assume a compact conformation that is similar to the one in tryptophan complex. Kinetic analysis showed that all three inhibitors are competitive versus the substrate tryptophan, consistent with the structural data that the compounds occupy the tryptophan binding site. On the other hand, all three inhibitors appear to be uncompetitive versus the cofactor 6-methyltetrahydropterin, which is not only consistent with the structural data but also indicate that the hydroxylation reaction follows an ordered binding mechanism in which a productive complex is formed only if tryptophan binds only after pterin, similar to the kinetic mechanisms of tyrosine and phenylalanine hydroxylase.

7.
Bioorg Med Chem Lett ; 20(10): 3138-41, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20392637

ABSTRACT

A series of N-hydroxy-3-[3-(1-substituted-1H-benzoimidazol-2-yl)-phenyl]-acrylamides (5a-5ab) and N-hydroxy-3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-acrylamides (12a-s) were designed, synthesized, and found to be nanomolar inhibitors of human histone deacetylases. Multiple compounds bearing an N1-piperidine demonstrate EC(50)s of 20-100 nM in human A549, HL60, and PC3 cells, in vitro and in vivo hyperacetylation of histones H3 and H4, and induction of p21(waf). Compound 5x displays efficacy in human tumor xenograft models.


Subject(s)
Benzimidazoles/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Imidazoles/chemistry , Acetylation , Animals , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Cell Line, Tumor , HL-60 Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Mice , Mice, Nude , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
Bioorg Med Chem Lett ; 19(23): 6784-7, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19836232

ABSTRACT

A series of deoxycytidine kinase inhibitors was simultaneously optimized for potency and PK properties. A co-crystal structure then allowed merging this series with a high throughput screening hit to afford a highly potent, selective and orally bioavailable inhibitor, compound 10. This compound showed dose dependent inhibition of deoxycytidine kinase in vivo.


Subject(s)
Deoxycytidine Kinase/antagonists & inhibitors , Deoxycytidine/analogs & derivatives , Drug Design , Protein Kinase Inhibitors/pharmacology , Deoxycytidine/chemical synthesis , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship
9.
Biochem J ; 404(2): 217-25, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17313366

ABSTRACT

The periplasmic iron-binding protein, FbpA (ferric-ion-binding protein A), performs an essential role in iron acquisition from transferrin in Haemophilus influenzae. A series of site-directed mutants in the metal-binding amino acids of FbpA were prepared to determine their relative contribution to iron binding and transport. Structural studies demonstrated that the mutant proteins crystallized in an open conformation with the iron atom associated with the C-terminal domain. The iron-binding properties of the mutant proteins were assessed by several assays, including a novel competitive iron-binding assay. The relative ability of the proteins to compete for iron was pH dependent, with a rank order at pH 6.5 of wild-type, Q58L, H9Q>H9A, E57A>Y195A, Y196A. The genes encoding the mutant FbpA were introduced into H. influenzae and the resulting strains varied in the level of ferric citrate required to support growth on iron-limited medium, suggesting a rank order for metal-binding affinities under physiological conditions comparable with the competitive binding assay at pH 6.5 (wild-type=Q58L>H9Q>H9A, E57A>Y195A, Y196A). Growth dependence on human transferrin was only obtained with cells expressing wild-type, Q58L or H9Q FbpAs, proteins with stability constants derived from the competition assay >2.0x10(18) M(-1). These results suggest that a relatively high affinity of iron binding by FbpA is required for removal of iron from transferrin and its transport across the outer membrane.


Subject(s)
Bacterial Proteins/metabolism , Haemophilus influenzae/metabolism , Iron/metabolism , Periplasm/metabolism , Transferrin/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Crystallography, X-Ray , DNA Primers , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Reproducibility of Results , Spectrophotometry, Ultraviolet
10.
Bioorg Med Chem Lett ; 17(3): 688-91, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17157005

ABSTRACT

The 2.25 A crystal structure of a complex of Aurora A kinase (AIKA) with cyclopropanecarboxylic acid-(3-(4-(3-trifluoromethyl-phenylamino)-pyrimidin-2-ylamino)-phenyl)-amide 1 is described here. The inhibitor binding mode is novel, with the cyclopropanecarboxylic acid moiety directed towards the solvent exposed region of the ATP-binding pocket, and several induced structural changes in the active-site compared with other published AIK structures. This structure provides context for the available SAR data on this compound class, and could be exploited for the design of analogs with increased affinity and selectivity for AIK.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Animals , Aurora Kinases , Cell Line , Crystallography, X-Ray , ErbB Receptors/drug effects , Models, Molecular , Molecular Conformation , Protein Serine-Threonine Kinases/chemistry , Structure-Activity Relationship
11.
Biochem J ; 403(1): 43-8, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17147516

ABSTRACT

The acquisition of iron from transferrin by Gram-negative bacterial pathogens is dependent on a periplasmic ferric-ion-binding protein, FbpA. FbpA shuttles iron from the outer membrane to an inner membrane transport complex. A bound phosphate anion completes the iron co-ordination shell of FbpA and kinetic studies demonstrate that the anion plays a critical role in iron binding and release in vitro. The present study was initiated to directly address the hypothesis that the synergistic anion is required for transport of iron in intact cells. A series of site-directed mutants in the anion-binding amino acids of the Haemophilus influenzae FbpA (Gln-58, Asn-175 and Asn-193) were prepared to provide proteins defective in binding of the phosphate anion. Crystal structures of various mutants have revealed that alteration of the C-terminal domain ligands (Asn-175 or Asn-193) but not the N-terminal domain ligand (Gln-58) abrogated binding of the phosphate anion. The mutant proteins were introduced into H. influenzae to evaluate their ability to mediate iron transport. All of the single site-directed mutants (Q58L, N175L and N193L) were capable of mediating iron acquisition from transferrin and from limiting concentrations of ferric citrate. The results suggest that the transport of iron by FbpA is not dependent on binding of phosphate in the synergistic anion-binding site.


Subject(s)
Haemophilus influenzae/metabolism , Iron-Binding Proteins/metabolism , Iron/metabolism , Periplasmic Binding Proteins/metabolism , Phosphates/metabolism , Amino Acid Substitution , Anaerobiosis , Anions/metabolism , Biological Transport , Cloning, Molecular , Crystallization , Escherichia coli/genetics , Escherichia coli/metabolism , Haemophilus influenzae/growth & development , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , X-Ray Diffraction
12.
Expert Rev Proteomics ; 2(4): 511-9, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16097885

ABSTRACT

High-throughput, automated or semiautomated methodologies implemented by companies and structural genomics initiatives have accelerated the process of acquiring structural information for proteins via x-ray crystallography. This has enabled the application of structure-based drug design technologies to a variety of new structures that have potential pharmacologic relevance. Although there remain major challenges to applying these approaches more broadly to all classes of drug discovery targets, clearly the continued development and implementation of these structure-based drug design methodologies by the scientific community at large will help to address and provide solutions to these hurdles. The result will be a growing number of protein structures of important pharmacologic targets that will help to streamline the process of identification and optimization of lead compounds for drug development. These lead agonist and antagonist pharmacophores should, in turn, help to alleviate one of the current critical bottlenecks in the drug discovery process; that is, defining the functional relevance of potential novel targets to disease modification. The prospect of generating an increasing number of potential drug candidates will serve to highlight perhaps the most significant future bottleneck for drug development, the cost and complexity of the drug approval process.


Subject(s)
Drug Design , Proteins/chemistry , Proteins/metabolism , Proteomics/methods , Animals , Crystallography, X-Ray , Gene Expression , Humans , Multiprotein Complexes , Proteins/genetics
14.
J Biol Chem ; 280(7): 5820-7, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15576371

ABSTRACT

The uptake of the element iron is vital for the survival of most organisms. Numerous pathogenic Gram-negative bacteria utilize a periplasm-to-cytosol ATP-binding cassette transport pathway to transport this essential atom in to the cell. In this study, we investigated the Yersinia enterocolitica (YfuA) and Serratia marcescens (SfuA) iron-binding periplasmic proteins. We have determined the 1.8-angstroms structures of iron-loaded (YfuA) and iron-free (SfuA) forms of this class of proteins. Although the sequence of these proteins varies considerably from the other members of the transferrin structural superfamily, they adopt the same three-dimensional fold. The iron-loaded YfuA structure illustrates the unique nature of this new class of proteins in that they are able to octahedrally coordinate the ferric ion in the absence of a bound anion. The iron-free SfuA structure contains a bound citrate anion in the iron-binding cleft that tethers the N- and C-terminal domains of the apo protein and stabilizes the partially open structure.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ferric Compounds/metabolism , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/metabolism , Iron/metabolism , Periplasm/chemistry , Amino Acid Sequence , Anions/metabolism , Bacteria/chemistry , Bacteria/classification , Bacteria/genetics , Bacterial Proteins/genetics , Crystallization , Crystallography, X-Ray , Genes, Bacterial/genetics , Iron-Binding Proteins/genetics , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Conformation
15.
Structure ; 12(7): 1325-34, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15242608

ABSTRACT

Modulation of the acetylation state of histones plays a pivotal role in the regulation of gene expression. Histone deacetylases (HDACs) catalyze the removal of acetyl groups from lysines near the N termini of histones. This reaction promotes the condensation of chromatin, leading to repression of transcription. HDAC deregulation has been linked to several types of cancer, suggesting a potential use for HDAC inhibitors in oncology. Here we describe the first crystal structures of a human HDAC: the structures of human HDAC8 complexed with four structurally diverse hydroxamate inhibitors. This work sheds light on the catalytic mechanism of the HDACs, and on differences in substrate specificity across the HDAC family. The structure also suggests how phosphorylation of Ser39 affects HDAC8 activity.


Subject(s)
Histone Deacetylases/chemistry , Repressor Proteins/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Histone Deacetylases/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Conformation , Repressor Proteins/metabolism , Substrate Specificity
16.
J Bacteriol ; 186(12): 3903-10, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15175304

ABSTRACT

We have determined the 1.35- and 1.45-A structures, respectively, of closed and open iron-loaded forms of Mannheimia haemolytica ferric ion-binding protein A. M. haemolytica is the causative agent in the economically important and fatal disease of cattle termed shipping fever. The periplasmic iron-binding protein of this gram-negative bacterium, which has homologous counterparts in many other pathogenic species, performs a key role in iron acquisition from mammalian host serum iron transport proteins and is essential for the survival of the pathogen within the host. The ferric (Fe(3+)) ion in the closed structure is bound by a novel asymmetric constellation of four ligands, including a synergistic carbonate anion. The open structure is ligated by three tyrosyl residues and a dynamically disordered solvent-exposed anion. Our results clearly implicate the synergistic anion as the primary mediator of global protein conformation and provide detailed insights into the molecular mechanisms of iron binding and release in the periplasm.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Iron/metabolism , Mannheimia haemolytica/metabolism , Periplasm/metabolism , Animals , Bacterial Outer Membrane Proteins , Cattle , Crystallization , Ferric Compounds/metabolism , Iron-Binding Proteins , Mannheimia haemolytica/chemistry , Models, Molecular , Molecular Sequence Data , Periplasmic Binding Proteins , Protein Conformation , X-Ray Diffraction
17.
J Biol Chem ; 279(10): 8526-9, 2004 Mar 05.
Article in English | MEDLINE | ID: mdl-14672944

ABSTRACT

Farnesyl pyrophosphate synthetase (FPPS) synthesizes farnesyl pyrophosphate through successive condensations of isopentyl pyrophosphate with dimethylallyl pyrophosphate and geranyl pyrophosphate. Nitrogen-containing bisphosphonate drugs used to treat osteoclast-mediated bone resorption and tumor-induced hypercalcemia are potent inhibitors of the enzyme. Here we present crystal structures of substrate and bisphosphonate complexes of FPPS. The structures reveal how enzyme conformational changes organize conserved active site residues to exploit metal-induced ionization and substrate positioning for catalysis. The structures further demonstrate how nitrogen-containing bisphosphonates mimic a carbocation intermediate to inhibit the enzyme. Together, these FPPS complexes provide a structural template for the design of novel inhibitors that may prove useful for the treatment of osteoporosis and other clinical indications including cancer.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Diphosphonates/chemistry , Terpenes/chemistry , Alkyl and Aryl Transferases/metabolism , Diphosphonates/metabolism , Escherichia coli , Geranyltranstransferase , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Terpenes/metabolism
18.
Biochemistry ; 42(41): 11908-14, 2003 Oct 21.
Article in English | MEDLINE | ID: mdl-14556621

ABSTRACT

The periplasmic iron binding protein plays an essential role in the iron uptake pathway of Gram-negative pathogenic bacteria from the Pasteurellaceae and Neisseriaceae families and is critical for survival of these pathogens within the host. In this study, we report the crystal structures of two mutant forms of ferric ion-binding protein A (FbpA) from Haemophilus influenzae with bound multinuclear oxo-metal clusters. Crystals of site-directed mutants in the metal or anion binding ligands contain protein in the open conformation, and two mutant FbpAs, H9A and N175L, contain different cluster arrangements in the iron-binding pocket. The iron clusters are anchored by binding to the two tyrosine ligands (Tyr195 and Tyr196) positioned at the vertex of the iron-binding pocket but are not coordinated by the other metal binding ligands. Our results suggest that the metal clusters may have formed in situ, suggesting that the mutant FbpAs may serve as a simple model for protein-mediated mineralization.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ferric Compounds/chemistry , Haemophilus influenzae/chemistry , Mutagenesis, Site-Directed , Alanine/genetics , Asparagine/genetics , Bacterial Outer Membrane Proteins , Crystallization , Crystallography, X-Ray , Haemophilus influenzae/genetics , Histidine/genetics , Iron-Binding Proteins , Leucine/genetics , Periplasmic Binding Proteins , Protein Binding/genetics , Solutions , Transferrin/chemistry
19.
Biochem Cell Biol ; 81(4): 275-83, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14569300

ABSTRACT

Pathogenic Gram-negative bacteria of the Pasteurellaceae and Neisseriaceae acquire iron for growth from host transferrin through the action of specific surface receptors. Iron is removed from transferrin by the receptor at the cell surface and is transported across the outer membrane to the periplasm. A periplasmic binding protein-dependent pathway subsequently transports iron into the cell. The transferrin receptor is composed of a largely surface-exposed lipoprotein, transferrin binding protein B, and a TonB-dependent integral outer membrane protein, transferrin binding protein A. To examine the role of transferrin binding protein B in the iron removal process, complexes of recombinant transferrin binding protein B and transferrin were prepared and compared with transferrin in metal-binding and -removal experiments. A polyhistidine-tagged form of recombinant transferrin binding protein B was able to purify a complex with transferrin that was largely monodisperse by dynamic light scattering analysis. Gallium was used instead of iron in the metal-binding studies, since it resulted in increased stability of recombinant transferrin binding protein B in the complex. Difference absorption spectra were used to monitor removal of gallium by nitrilotriacetic acid. Kinetic and equilibrium binding studies indicated that transferrin binds gallium more tightly in the presence of transferrin binding protein B. Thus, transferrin binding protein B does not facilitate metal ion removal and additional components are required for this process.


Subject(s)
Iron/metabolism , Receptors, Transferrin/metabolism , Transferrin-Binding Protein B/metabolism , Transferrin/metabolism , Bacterial Outer Membrane Proteins/metabolism , Biological Transport , Gallium/metabolism , Humans , Neisseria meningitidis/metabolism , Periplasm/metabolism , Protein Binding , Recombinant Proteins/metabolism
20.
J Bacteriol ; 185(14): 4152-62, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12837790

ABSTRACT

UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.


Subject(s)
Haemophilus influenzae/enzymology , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Adenosine Triphosphate/metabolism , Adenylyl Imidodiphosphate/chemistry , Adenylyl Imidodiphosphate/metabolism , Amino Acid Sequence , Binding Sites , Crystallization , Crystallography, X-Ray , Haemophilus influenzae/genetics , Magnesium/chemistry , Magnesium/metabolism , Manganese/chemistry , Manganese/metabolism , Molecular Sequence Data , Peptide Synthases/genetics , Peptidoglycan/metabolism , Protein Conformation , Protein Structure, Tertiary , Sequence Alignment , Substrate Specificity , Uridine Diphosphate N-Acetylmuramic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...