Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(13): 15232-15238, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585132

ABSTRACT

Calcined biowaste durian peel (BDP) contains 86% potassium element as the main compound and has successfully catalyzed the transesterification of palm oil to biodiesel at room temperature. The effect of catalyst weight, molar ratio of palm oil to methanol, reaction time, and rotational speed of the homogenizer device was investigated on biodiesel conversion and yield. The highest biodiesel conversion of 97.4 ± 0.3% was achieved using the following reaction conditions: a catalyst weight of 5 wt %, a molar ratio of palm oil to methanol of 1:15, a reaction time of 10 min, and a rotational speed of 6000 rpm. Unfortunately, calcined BDP could not hold its catalytic activity in the reusability study. The biodiesel conversion was decreased in the second cycle due to the decrease of both catalyst weight and concentration of potassium ions after the first cycle. However, the calcined BDP paired with a homogenizer device could produce biodiesel in a short reaction time and at room temperature.

2.
RSC Adv ; 13(47): 33107-33113, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37954417

ABSTRACT

The esterification of a high-free fatty acid feedstock to biodiesel is often performed in high-temperature conditions using either homogeneous or heterogeneous acid catalysts. Thus, this study attempts to esterify oleic acid to biodiesel in room temperature conditions using sulphuric acid as a catalyst and a homogenizer device. The influences of process parameters including the molar ratio of oleic acid to methanol, catalyst concentration and rotational speed on biodiesel conversion were determined in different reaction times. The maximum conversion of 96.1 ± 0.4% was obtained in the presence of a molar ratio of 1 : 12, catalyst concentration of 0.7 mol L-1, a rotational speed of 4000 rpm and a reaction time of 30 minutes. The catalytic reusability test showed that the addition of fresh methanol is required to maintain the catalytic activity. However, the homogenizer-intensify esterification of oleic acid to biodiesel showed better performance than other methods as the reaction could conducted at room temperature and at a short reaction time. The predicted biodiesel properties meet the international standard except for oxidative stability. However, the flow properties revealed that the biodiesel can be used in winter season.

3.
ACS Omega ; 8(42): 39168-39173, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901503

ABSTRACT

Currently, esterification production of isopropyl myristate (IPM) or isopropyl palmitate (IPP) uses a homogeneous or heterogeneous acid substance as a catalyst and is conducted at high temperatures and pressures. Utilization of this type of catalyst requires an additional postproduction process (neutralization and purification), which burdens the production cost. Microwave enzymatic esterification is a simple and fast method. The results showed that reaction time, ratio molar of fatty acids to isopropyl alcohol, catalyst weight, and microwave power have a significant effect on the IPM or IPP conversion. Further, the energy consumption of this process is less than other enzymatic esterification and is certainly more energy efficient, which could save 99 and 29% of processing time.

4.
Heliyon ; 9(6): e16402, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37292359

ABSTRACT

Insect larvae contain sufficient oil comparable with oleaginous biomass, and hence have potency as alternative biodiesel resources. The direct transesterification of Black Soldier Fly (BSF) larvae have conducted using a controllable crushing device (CCD) and a homogeneous base as a catalyst. The effect of catalyst concentration (wt.%), ratio BSF larvae to methanol (wt./v), reaction time (min) and rotational speed (rpm) on biodiesel conversion was determined. The maximum conversion of 93.8% was achieved at room temperature after 20 min of reaction time and ratio larvae to methanol of 1:2 (wt./v), catalyst concentration of 7 wt% and rotational speed of 3000 rpm. In addition, the green metrics calculation showed that this method produces less waste and uses less solvent. Some of the BSF-biodiesel properties meet the biodiesel standard. The CCD-intensified the DT of BSF larvae is a promising alternative for green and energy-saved biodiesel production.

5.
RSC Adv ; 13(9): 6217-6224, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36825289

ABSTRACT

Banana peels as agro-waste residues contain potassium oxide as the main component after calcination. The calcined waste banana peels (WBPs) successfully transesterified palm oil to biodiesel at room temperature using a homogenizer. The catalyst was characterized by TGA, SEM, XRD and XRF. The catalytic activity of calcined WBPs was determined using parameters of the molar ratio of palm oil to methanol, catalyst weight, reaction time and rotational speed of the homogenizer. The highest biodiesel conversion of 97.7 ± 0.6% was achieved with a molar ratio of 1 : 15, catalyst weight of 7 wt%, reaction time of 30 min and rotational speed of 6000 rpm. Unfortunately, the calcined WBP cannot be reused unless some fresh catalyst is added to defend its catalytic activity, as the concentration of K2O decreases after the reaction. However, the catalyst showed better performance as the transesterification reaction could be carried out at room temperature in a short reaction time using a homogenizer compared with other methods.

6.
RSC Adv ; 12(4): 2094-2101, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425230

ABSTRACT

A multistep and high-cost biodiesel production could be simplified using the direct transesterification (DT) method. A controllable device has been developed and applied to study the effects of the ratio of rubber seeds to methanol, catalyst concentration, reaction time and rotational speed on biodiesel conversion and fatty acid (FA) yield extraction. The controllable crushing device (CCD) assisted the DT of rubber seeds and operated at ambient temperature and pressure achieved a maximum biodiesel conversion of 97.5 ± 0.6% in a reaction time of 7 minutes. The biodiesel quality estimated based on the FA extraction profile is comparable with the biodiesel standard. In terms of energy efficiency and reaction time, the CCD saved 71-98% energy consumption and reduced the reaction time up to 99%.

7.
ACS Omega ; 7(9): 7885-7892, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35284706

ABSTRACT

A low-cost, green, and highly active catalyst which could transesterify oil under ambient conditions is required to reduce the biodiesel production cost. A novel heterogeneous catalyst derived from the waste agroproduct has been developed from passion fruit peel. The catalytic activity of calcined waste passion fruit peel (WPFP) which mainly contains potassium in the form of chloride and carbonate has been evaluated using factorial design to determine the interaction of molar ratio of oil to methanol, catalyst weight, and reaction time with three different reaction conditions such as 65, 45 °C, and room temperature. The transesterification of palm oil to biodiesel achieved a conversion of >90% for all variables determined at a reaction temperature of 45 and 65 °C, respectively, while a maximum biodiesel conversion of 95.4 ± 2.8% was obtained at room temperature and a reaction time of 30 min. The addition of certain amounts of the catalyst is required to reuse the catalyst as the leaching study showed the reduction of 22% of catalyst weight. The ability of calcined WPFP to catalyze transesterification at room temperature opens up the possibility to reduce biodiesel production cost.

8.
J Adv Pharm Technol Res ; 11(1): 1-5, 2020.
Article in English | MEDLINE | ID: mdl-32154151

ABSTRACT

This study aims to provide information on physicochemical properties of Arenga pinnata endosperm (APE) and its antidiabetic activity for utilization in the food and pharmaceutical industries. The antidiabetic effect of APE was studied through an observational experiment on the blood glucose level of rats. The physicochemical properties of APE were determined using a texturometer, X-ray powder diffraction, Brookfield viscometer, scanning electron microscopy, Fourier-transform infrared spectroscopy, and light microscope. The APE was categorized based on its texture into three groups. The crystal structure of APE is microspore and amorf while the hydrogel has a non-Newtonian property and is stable at 50°C. The viscosity index was increased in the increasing temperature with the order of high viscosity of APE being 1, 2, and 3. The hydrogel shape of APE 1 and 3 was lameral in the concentration of 1.25%. For antidiabetic study, the findings demonstrated that the APE could reduce the blood glucose level. The APE powders 1 and 2 with the respective weight of 50 and 200 mg have significant effects on reducing rat blood glucose level compared to the diabetic rats. Based on these properties, APE could potentially be used as a natural antidiabetic food without having any side effect and in the pharmaceutical industry for some purposes.

9.
RSC Adv ; 9(60): 35109-35116, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-35530672

ABSTRACT

Utilization of waste spent coffee grounds (SCG) remains limited and requires pre-treatment before being discarded to avoid pollution to the environment. Lipids contained in SCG could be converted to biodiesel through an in situ transesterification method. Current in situ transesterification of wet SCG biomass, conducted at high reaction temperature to reduce the water effect and reduce reaction time, is energy intensive. A new approach, which combines simultaneous extraction-transesterification in a single step using soxhlet apparatus, was developed to produce biodiesel directly from wet SCG biomass. A homogeneous base catalyst at a concentration of 0.75 M showed better catalytic activity than acid, with hexane as a co-solvent on fatty acid (FA) extraction efficiency and FA to fatty acid methyl ester (FAME) conversion efficiency. Studying the factorial effect of ratio of methanol to hexane and reaction time led to the highest FA to FAME conversion efficiency of 97% at a ratio of 1 : 2 and 30 min reaction time. In addition, the catalyst could be used five times without losing its activity. In term of energy consumption, the reactive extraction soxhlet (RES) method could save 38-99% of energy compared to existing methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...