Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014041

ABSTRACT

Animals navigating turbulent odor plumes exhibit a rich variety of behaviors, and employ efficient strategies to locate odor sources. A growing body of literature has started to probe this complex task of localizing airborne odor sources in walking mammals to further our understanding of neural encoding and decoding of naturalistic sensory stimuli. However, correlating the intermittent olfactory information with behavior has remained a long-standing challenge due to the stochastic nature of the odor stimulus. We recently reported a method to record real-time olfactory information available to freely moving mice during odor-guided navigation, hence overcoming that challenge. Here we combine our odor-recording method with head-motion tracking to establish correlations between plume encounters and head movements. We show that mice exhibit robust head-pitch motions in the 5-14Hz range during an odor-guided navigation task, and that these head motions are modulated by plume encounters. Furthermore, mice orient towards the odor source upon plume contact. Head motions may thus be an important part of the sensorimotor behavioral repertoire during naturalistic odor-source localization.

2.
Front Cell Neurosci ; 15: 633757, 2021.
Article in English | MEDLINE | ID: mdl-34012385

ABSTRACT

Although mice locate resources using turbulent airborne odor plumes, the stochasticity and intermittency of fluctuating plumes create challenges for interpreting odor cues in natural environments. Population activity within the olfactory bulb (OB) is thought to process this complex spatial and temporal information, but how plume dynamics impact odor representation in this early stage of the mouse olfactory system is unknown. Limitations in odor detection technology have made it difficult to measure plume fluctuations while simultaneously recording from the mouse's brain. Thus, previous studies have measured OB activity following controlled odor pulses of varying profiles or frequencies, but this approach only captures a subset of features found within olfactory plumes. Adequately sampling this feature space is difficult given a lack of knowledge regarding which features the brain extracts during exposure to natural olfactory scenes. Here we measured OB responses to naturally fluctuating odor plumes using a miniature, adapted odor sensor combined with wide-field GCaMP6f signaling from the dendrites of mitral and tufted (MT) cells imaged in olfactory glomeruli of head-fixed mice. We precisely tracked plume dynamics and imaged glomerular responses to this fluctuating input, while varying flow conditions across a range of ethologically-relevant values. We found that a consistent portion of MT activity in glomeruli follows odor concentration dynamics, and the strongest responding glomeruli are the best at following fluctuations within odor plumes. Further, the reliability and average response magnitude of glomerular populations of MT cells are affected by the flow condition in which the animal samples the plume, with the fidelity of plume following by MT cells increasing in conditions of higher flow velocity where odor dynamics result in intermittent whiffs of stronger concentration. Thus, the flow environment in which an animal encounters an odor has a large-scale impact on the temporal representation of an odor plume in the OB. Additionally, across flow conditions odor dynamics are a major driver of activity in many glomerular networks. Taken together, these data demonstrate that plume dynamics structure olfactory representations in the first stage of odor processing in the mouse olfactory system.

3.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33419862

ABSTRACT

Olfaction guides navigation and decision-making in organisms from multiple animal phyla. Understanding how animals use olfactory cues to guide navigation is a complicated problem for two main reasons. First, the sensory cues used to guide animals to the source of an odor consist of volatile molecules, which form plumes. These plumes are governed by turbulent air currents, resulting in an intermittent and spatiotemporally varying olfactory signal. A second problem is that the technologies for chemical quantification are cumbersome and cannot be used to detect what the freely moving animal senses in real time. Understanding how the olfactory system guides this behavior requires knowing the sensory cues and the accompanying brain signals during navigation. Here, we present a method for real-time monitoring of olfactory information using low-cost, lightweight sensors that robustly detect common solvent molecules, like alcohols, and can be easily mounted on the heads of freely behaving mice engaged in odor-guided navigation. To establish the accuracy and temporal response properties of these sensors we compared their responses with those of a photoionization detector (PID) to precisely controlled ethanol stimuli. Ethanol-sensor recordings, deconvolved using a difference-of-exponentials kernel, showed robust correlations with the PID signal at behaviorally relevant time, frequency, and spatial scales. Additionally, calcium imaging of odor responses from the olfactory bulbs (OBs) of awake, head-fixed mice showed strong correlations with ethanol plume contacts detected by these sensors. Finally, freely behaving mice engaged in odor-guided navigation showed robust behavioral changes such as speed reduction that corresponded to ethanol plume contacts.


Subject(s)
Smell , Spatial Navigation , Animals , Cues , Ethanol , Mice , Odorants
4.
eNeuro ; 5(1)2018.
Article in English | MEDLINE | ID: mdl-29435486

ABSTRACT

Transient receptor potential channel, TRPM4, the putative molecular substrate for Ca2+-activated nonselective cation current (ICAN), is hypothesized to generate bursting activity of pre-Bötzinger complex (pre-BötC) inspiratory neurons and critically contribute to respiratory rhythmogenesis. Another TRP channel, TRPC3, which mediates Na+/Ca2+ fluxes, may be involved in regulating Ca2+-related signaling, including affecting TRPM4/ICAN in respiratory pre-BötC neurons. However, TRPM4 and TRPC3 expression in pre-BötC inspiratory neurons and functional roles of these channels remain to be determined. By single-cell multiplex RT-PCR, we show mRNA expression for these channels in pre-BötC inspiratory neurons in rhythmically active medullary in vitro slices from neonatal rats and mice. Functional contributions were analyzed with pharmacological inhibitors of TRPM4 or TRPC3 in vitro as well as in mature rodent arterially perfused in situ brainstem-spinal cord preparations. Perturbations of respiratory circuit activity were also compared with those by a blocker of ICAN. Pharmacologically attenuating endogenous activation of TRPM4, TRPC3, or ICANin vitro similarly reduced the amplitude of inspiratory motoneuronal activity without significant perturbations of inspiratory frequency or variability of the rhythm. Amplitude perturbations were correlated with reduced inspiratory glutamatergic pre-BötC neuronal activity, monitored by multicellular dynamic calcium imaging in vitro. In more intact circuits in situ, the reduction of pre-BötC and motoneuronal inspiratory activity amplitude was accompanied by reduced post-inspiratory motoneuronal activity, without disruption of rhythm generation. We conclude that endogenously activated TRPM4, which likely mediates ICAN, and TRPC3 channels in pre-BötC inspiratory neurons play fundamental roles in respiratory pattern formation but are not critically involved in respiratory rhythm generation.


Subject(s)
Brain Stem/metabolism , Neurons/metabolism , Respiration , TRPC Cation Channels/metabolism , TRPM Cation Channels/metabolism , Animals , Brain Stem/cytology , Brain Stem/drug effects , Central Pattern Generators/cytology , Central Pattern Generators/drug effects , Central Pattern Generators/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/cytology , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/cytology , Neurons/drug effects , Periodicity , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Respiration/drug effects , Tissue Culture Techniques
5.
eNeuro ; 3(3)2016.
Article in English | MEDLINE | ID: mdl-27275007

ABSTRACT

The rhythm of breathing in mammals, originating within the brainstem pre-Bötzinger complex (pre-BötC), is presumed to be generated by glutamatergic neurons, but this has not been directly demonstrated. Additionally, developmental expression of the transcription factor Dbx1 or expression of the neuropeptide somatostatin (Sst), has been proposed as a marker for the rhythmogenic pre-BötC glutamatergic neurons, but it is unknown whether these other two phenotypically defined neuronal populations are functionally equivalent to glutamatergic neurons with regard to rhythm generation. To address these problems, we comparatively investigated, by optogenetic approaches, the roles of pre-BötC glutamatergic, Dbx1-derived, and Sst-expressing neurons in respiratory rhythm generation in neonatal transgenic mouse medullary slices in vitro and also more intact adult perfused brainstem-spinal cord preparations in situ. We established three different triple-transgenic mouse lines with Cre-driven Archaerhodopsin-3 (Arch) expression selectively in glutamatergic, Dbx1-derived, or Sst-expressing neurons for targeted photoinhibition. In each line, we identified subpopulations of rhythmically active, Arch-expressing pre-BötC inspiratory neurons by whole-cell recordings in medullary slice preparations in vitro, and established that Arch-mediated hyperpolarization of these inspiratory neurons was laser power dependent with equal efficacy. By site- and population-specific graded photoinhibition, we then demonstrated that inspiratory frequency was reduced by each population with the same neuronal voltage-dependent frequency control mechanism in each state of the respiratory network examined. We infer that enough of the rhythmogenic pre-BötC glutamatergic neurons also have the Dbx1 and Sst expression phenotypes, and thus all three phenotypes share the same voltage-dependent frequency control property.


Subject(s)
Biological Clocks/physiology , Glutamic Acid/metabolism , Homeodomain Proteins/metabolism , Neurons/metabolism , Respiratory Center/metabolism , Somatostatin/metabolism , Animals , Female , Homeodomain Proteins/genetics , Inhalation/physiology , Male , Membrane Potentials/physiology , Mice, Transgenic , Neural Pathways/metabolism , Neural Pathways/pathology , Neurons/pathology , Optogenetics , Periodicity , Respiratory Center/pathology , Somatostatin/genetics , Spinal Cord/metabolism , Spinal Cord/pathology , Tissue Culture Techniques
6.
eNeuro ; 3(2)2016.
Article in English | MEDLINE | ID: mdl-27200412

ABSTRACT

The pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes are the brainstem compartments containing interneurons considered to be critically involved in generating respiratory rhythm and motor pattern in mammals. Current models postulate that both generation of the rhythm and coordination of the inspiratory-expiratory pattern involve inhibitory synaptic interactions within and between these regions. Both regions contain glycinergic and GABAergic neurons, and rhythmically active neurons in these regions receive appropriately coordinated phasic inhibition necessary for generation of the normal three-phase respiratory pattern. However, recent experiments attempting to disrupt glycinergic and GABAergic postsynaptic inhibition in the pre-BötC and BötC in adult rats in vivo have questioned the critical role of synaptic inhibition in these regions, as well as the importance of the BötC, which contradicts previous physiological and pharmacological studies. To further evaluate the roles of synaptic inhibition and the BötC, we bilaterally microinjected the GABAA receptor antagonist gabazine and glycinergic receptor antagonist strychnine into the pre-BötC or BötC in anesthetized adult rats in vivo and in perfused in situ brainstem-spinal cord preparations from juvenile rats. Muscimol was microinjected to suppress neuronal activity in the pre-BötC or BötC. In both preparations, disrupting inhibition within pre-BötC or BötC caused major site-specific perturbations of the rhythm and disrupted the three-phase motor pattern, in some experiments terminating rhythmic motor output. Suppressing BötC activity also potently disturbed the rhythm and motor pattern. We conclude that inhibitory circuit interactions within and between the pre-BötC and BötC critically regulate rhythmogenesis and are required for normal respiratory motor pattern generation.


Subject(s)
Neural Inhibition/physiology , Respiration Disorders/physiopathology , Respiratory Center/physiology , Respiratory Rate/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cranial Nerves/physiology , Disease Models, Animal , GABA Antagonists/pharmacology , GABA-A Receptor Agonists/pharmacology , Glutamic Acid/toxicity , Glycine Agents/pharmacology , Male , Muscimol/pharmacology , Nerve Net/drug effects , Nerve Net/physiology , Neural Inhibition/drug effects , Pyridazines/pharmacology , Rats , Rats, Sprague-Dawley , Respiration Disorders/etiology , Respiratory Center/drug effects , Respiratory Rate/drug effects , Spinal Cord/physiology , Strychnine/pharmacology , Vagotomy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...