Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 575(7781): 229-233, 2019 11.
Article in English | MEDLINE | ID: mdl-31666694

ABSTRACT

Epigenetic aberrations are widespread in cancer, yet the underlying mechanisms and causality remain poorly understood1-3. A subset of gastrointestinal stromal tumours (GISTs) lack canonical kinase mutations but instead have succinate dehydrogenase (SDH) deficiency and global DNA hyper-methylation4,5. Here, we associate this hyper-methylation with changes in genome topology that activate oncogenic programs. To investigate epigenetic alterations systematically, we mapped DNA methylation, CTCF insulators, enhancers, and chromosome topology in KIT-mutant, PDGFRA-mutant and SDH-deficient GISTs. Although these respective subtypes shared similar enhancer landscapes, we identified hundreds of putative insulators where DNA methylation replaced CTCF binding in SDH-deficient GISTs. We focused on a disrupted insulator that normally partitions a core GIST super-enhancer from the FGF4 oncogene. Recurrent loss of this insulator alters locus topology in SDH-deficient GISTs, allowing aberrant physical interaction between enhancer and oncogene. CRISPR-mediated excision of the corresponding CTCF motifs in an SDH-intact GIST model disrupted the boundary between enhancer and oncogene, and strongly upregulated FGF4 expression. We also identified a second recurrent insulator loss event near the KIT oncogene, which is also highly expressed across SDH-deficient GISTs. Finally, we established a patient-derived xenograft (PDX) from an SDH-deficient GIST that faithfully maintains the epigenetics of the parental tumour, including hypermethylation and insulator defects. This PDX model is highly sensitive to FGF receptor (FGFR) inhibition, and more so to combined FGFR and KIT inhibition, validating the functional significance of the underlying epigenetic lesions. Our study reveals how epigenetic alterations can drive oncogenic programs in the absence of canonical kinase mutations, with implications for mechanistic targeting of aberrant pathways in cancers.


Subject(s)
Carcinogenesis/genetics , Chromosome Aberrations , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Oncogenes/genetics , Succinate Dehydrogenase/deficiency , Animals , CRISPR-Cas Systems/genetics , DNA Methylation , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Fibroblast Growth Factor 4/genetics , Gastrointestinal Stromal Tumors/enzymology , Humans , Mice , Mutation , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Succinate Dehydrogenase/genetics
2.
Nat Commun ; 10(1): 4258, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31534142

ABSTRACT

The human genome is folded into regulatory units termed 'topologically-associated domains' (TADs). Genome-wide studies support a global role for the insulator protein CTCF in mediating chromosomal looping and the topological constraint of TAD boundaries. However, the impact of individual insulators on enhancer-gene interactions and transcription remains poorly understood. Here, we investigate epigenome editing strategies for perturbing individual CTCF insulators and evaluating consequent effects on genome topology and transcription. We show that fusions of catalytically-inactive Cas9 (dCas9) to transcriptional repressors (dCas9-KRAB) and DNA methyltransferases (dCas9-DNMT3A, dCas9-DNMT3A3L) can selectively displace CTCF from specific insulators, but only when precisely targeted to the cognate motif. We further demonstrate that stable, partially-heritable insulator disruption can be achieved through combinatorial hit-and-run epigenome editing. Finally, we apply these strategies to simulate an insulator loss mechanism implicated in brain tumorigenesis. Our study provides strategies for stably modifying genome organization and gene activity without altering the underlying DNA sequence.


Subject(s)
CCCTC-Binding Factor/genetics , CRISPR-Associated Protein 9/genetics , Carcinogenesis/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Gene Editing/methods , Recombinant Fusion Proteins/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , CRISPR-Cas Systems/genetics , Carcinogenesis/pathology , Cell Line , DNA Methylation , DNA Methyltransferase 3A , Epigenesis, Genetic/genetics , Genome, Human/genetics , HEK293 Cells , Humans , Promoter Regions, Genetic/genetics , Repressor Proteins/metabolism
3.
Cell Rep ; 21(3): 784-797, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29045844

ABSTRACT

Gain-of-function Notch mutations are recurrent in mature small B cell lymphomas such as mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), but the Notch target genes that contribute to B cell oncogenesis are largely unknown. We performed integrative analysis of Notch-regulated transcripts, genomic binding of Notch transcription complexes, and genome conformation data to identify direct Notch target genes in MCL cell lines. This B cell Notch regulome is largely controlled through Notch-bound distal enhancers and includes genes involved in B cell receptor and cytokine signaling and the oncogene MYC, which sustains proliferation of Notch-dependent MCL cell lines via a Notch-regulated lineage-restricted enhancer complex. Expression of direct Notch target genes is associated with Notch activity in an MCL xenograft model and in CLL lymph node biopsies. Our findings provide key insights into the role of Notch in MCL and other B cell malignancies and have important implications for therapeutic targeting of Notch-dependent oncogenic pathways.


Subject(s)
B-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Oncogenes , Receptors, Notch/metabolism , Signal Transduction , Animals , Biopsy , Cell Differentiation/genetics , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Gene Rearrangement , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Notch/genetics , Tumor Microenvironment , Xenograft Model Antitumor Assays
4.
J Bacteriol ; 196(20): 3643-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25112473

ABSTRACT

Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Genetic Fitness , Shewanella/metabolism , Zymomonas/metabolism , Bacterial Proteins/genetics , Mutation , Shewanella/genetics , Zymomonas/genetics
5.
PLoS One ; 9(8): e105689, 2014.
Article in English | MEDLINE | ID: mdl-25148472

ABSTRACT

We are developing a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S-rRNA-gene targeting microarrays, we compared the compositions of sampled communities to those of inocula propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in both aeration basin and laboratory-cultured communities. Laboratory-cultured communities were enriched in γ-Proteobacteria. Enterobacteriaceae, and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiacea by high (50 mM) concentrations of chloroacetate. Microbial communities cultured with chloroacetate and D-threonine were more similar to sampled field communities than those cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units (OTUs) was lower for laboratory cultures than for field communities, both flask and reactor systems supported phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor failure scenarios.


Subject(s)
Bacteria , Carbon/metabolism , Plants/microbiology , Wastewater/microbiology , Water Microbiology , Water Purification , Bacteria/genetics , Bacteria/growth & development , Microbial Consortia/genetics
6.
Mol Syst Biol ; 9: 674, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23774757

ABSTRACT

The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance.


Subject(s)
Cellulose/metabolism , Ethanol/metabolism , Models, Chemical , Models, Genetic , Saccharomyces cerevisiae/metabolism , Zymomonas/metabolism , Biomass , Cellulose/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Fermentation , Gene Library , Genes, Bacterial , Genes, Fungal , Hydrolysis , Mutation , Pyruvaldehyde/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Stress, Physiological , Zymomonas/drug effects , Zymomonas/genetics
7.
Astrobiology ; 12(12): 1135-42, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23140229

ABSTRACT

A persistent presence in space can either be supported from Earth or generate the required resources for human survival from material already present in space, so called "in situ material." Likely, many of these resources such as water or oxygen can best be liberated from in situ material by conventional physical and chemical processes. However, there is one critical resource required for human life that can only be produced in quantity by biological processes: high-protein food. Here, recent data concerning the materials available on the Moon and common asteroid types is reviewed with regard to the necessary materials to support the production of food from material in situ to those environments. These materials and their suitability as feedstock for the biological production of food are reviewed in a broad and general way such that terminology that is often a barrier to understanding such material by interdisciplinary readers is avoided. The waste products available as in situ materials for feasibility studies on the International Space Station are also briefly discussed. The conclusion is that food production in space environments from in situ material proven to exist there is quite feasible.


Subject(s)
Extraterrestrial Environment , Food , Life Support Systems , Space Flight , Bioreactors , Feasibility Studies , Humans , Minor Planets , Moon , Refuse Disposal , Spirulina/metabolism , Synthetic Biology , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...