Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(5): e16101, 2023 May.
Article in English | MEDLINE | ID: mdl-37215908

ABSTRACT

Background: Human papillomaviruses have been shown to dysregulate the gene expression and DNA methylation profiles of their host cells over the course of infection. However, there is a lack of information on the impact of low-risk HPV infection and wart formation on host cell's expression and methylation patterns. Therefore, the objective of this study is to analyse the genome and methylome of common warts using an integrative approach. Methods: In the present study, gene expression (GSE136347) and methylation (GSE213888) datasets of common warts were obtained from the GEO database. Identification of the differentially expressed and differentially methylated genes was carried out using the RnBeads R package and the edgeR Bioconductor package. Next, functional annotation of the identified genes was obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Network construction and analyses of the gene-gene, protein-protein, and signaling interactions of the differentially expressed and differentially methylated genes was performed using the GeneMANIA web interface, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the Signaling Network Open Resource 2.0 (SIGNOR 2.0), respectively. Lastly, significant hub genes were identified using the Cytoscape application CytoHubba. Results: A total of 276 genes were identified as differentially expressed and differentially methylated in common warts, with 52% being upregulated and hypermethylated. Functional enrichment analysis identified extracellular components as the most enriched annotations, while network analyses identified ELN, ITGB1, TIMP1, MMP2, LGALS3, COL1A1 and ANPEP as significant hub genes. Conclusions: To the best knowledge of the authors, this is the first integrative study to be carried out on non-genital warts induced by low-risk HPV types. Future studies are required to re-validate the findings in larger populations using alternative approaches.

2.
Heliyon ; 8(11): e11790, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36458289

ABSTRACT

Background: Long non-coding RNAs (lncRNAs) have been the subject of considerable attention in recent years due to their role in gene regulation. However, the function of lncRNAs remains poorly understood, especially in the context of infection with low-risk human papillomaviruses (HPVs). To further understanding on this issue, we investigated lncRNA expression in HPV-induced common warts. Methods: A publicly available high-throughput sequencing dataset for common warts was downloaded from the Gene Expression Omnibus (GEO). lncRNA profiles were generated using the NetworkAnalyst 3.0 workflow, and a list of differentially expressed (DE) lncRNAs in common warts was identified and inputted into the ENCODE, RegNetwork, DisGeNet, and miRNet platforms. Results: A total of 54 lncRNAs were revealed to be significantly dysregulated in common warts. Of these 54 lncRNAs, 24 and 30 were upregulated and downregulated, respectively. The most significantly differentially expressed lncRNAs in common warts included the CERNA2, LINC02159, SH3PXD2A-AS1, and UNC5B-AS1 genes. Conclusion: The current findings suggest that HPV-induced warts impact the host lncRNA transcriptome. To the best of our knowledge, the present study is the first to explore the impact of low-risk HPV infection on lncRNA expression profiles.

3.
Drug Res (Stuttg) ; 72(8): 466-472, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952682

ABSTRACT

BACKGROUND: Coronaviruses are emerging threats for human health, as demonstrated by the ongoing coronavirus disease 2019 (COVID-19) pandemic that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is closely related to SARS-CoV-1, which was the cause of the 2002-2004 SARS outbreak, but SARS-CoV-1 has been the subject of a relatively limited number of studies. Understanding the potential pathways and molecular targets of SARS-CoV-1 will contribute to current drug repurposing strategies by helping to predict potential drug-disease associations. METHODS: A microarray dataset, GSE1739, of 10 SARS patients and 4 healthy controls was downloaded from NCBI's GEO repository, and differential expression was identified using NCBI's GEO2R software. Pathway and enrichment analysis of the differentially expressed genes was carried out using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis, respectively. RESULTS: Our findings show that the drugs dexamethasone, filgrastim, interferon alfacon-1, and levodopa were among the most significant upstream regulators of differential gene expression in SARS patients, while neutrophil degranulation was the most significantly enriched pathway. CONCLUSION: An enhanced understanding of the pathways and molecular targets of SARS-CoV-1 in humans will contribute to current and future drug repurposing strategies, which are an essential tool to combat rapidly emerging health threats.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Dexamethasone , Filgrastim , Humans , Levodopa
4.
J Steroid Biochem Mol Biol ; 219: 106081, 2022 05.
Article in English | MEDLINE | ID: mdl-35182726

ABSTRACT

Endurance training is associated with physiological changes in elite athletes, but little is known about female-specific effects of endurance training. Despite the significant rise in female sports participation, findings from studies performed on male athletes are largely extrapolated to females without taking into consideration sex-specific differences in metabolism. Subsequently, this study aimed to investigate the steroid hormone profiles of elite female endurance athletes in comparison with their non-athletic counterparts. Untargeted metabolomics-based mass spectroscopy combined with ultra-high-performance liquid chromatography was performed on serum samples from 51 elite female endurance athletes and 197 non-athletic females. The results showed that, compared to non-athletic females, certain androgen, pregnenolone, and progestin steroid hormones were reduced in elite female endurance athletes, while corticosteroids were elevated. The most significantly altered steroid hormones were 5alpha-androstan-3alpha,17alpha-diol monosulfate (FDR = 1.90 × 10-05), androstenediol (3alpha, 17alpha) monosulfate (FDR = 2.93 × 10-04), and cortisol (FDR = 2.93 × 10-04). Conclusively, the present study suggests that elite female endurance athletes have a unique steroid hormone profile with implications on their general health and performance.


Subject(s)
Androgens , Athletes , Adrenal Cortex Hormones , Female , Humans , Male , Metabolome , Steroids
5.
Egypt J Med Hum Genet ; 23(1): 69, 2022.
Article in English | MEDLINE | ID: mdl-37521848

ABSTRACT

Background: Cigarette smoking is the leading preventable cause of death worldwide, and it is the most common cause of oral cancers. This study aims to provide a deeper understanding of the molecular pathways in the oral cavity that are altered by exposure to cigarette smoke. Methods: The gene expression dataset (accession number GSE8987, GPL96) of buccal mucosa samples from smokers (n = 5) and never smokers (n = 5) was downloaded from The National Center for Biotechnology Information's (NCBI) Gene Expression Omnibus (GEO) repository. Differential expression was ascertained via NCBI's GEO2R software, and Ingenuity Pathway Analysis (IPA) software was used to perform a pathway analysis. Results: A total of 459 genes were found to be significantly differentially expressed in smoker buccal mucosa (p < 0.05). A total of 261 genes were over-expressed while 198 genes were under-expressed. The top canonical pathways predicted by IPA were nitric oxide and reactive oxygen production at macrophages, macrophages/fibroblasts and endothelial cells in rheumatoid arthritis, and thyroid cancer pathways. The IPA upstream analysis predicted that the TP53, APP, SMAD3, and TNF proteins as well as dexamethasone drug would be top transcriptional regulators. Conclusions: IPA highlighted critical pathways of carcinogenesis, mainly nitric oxide and reactive oxygen production at macrophages, and confirmed widespread injury in the buccal mucosa due to exposure to cigarette smoke. Our findings suggest that cigarette smoking significantly impacts gene pathways in the buccal mucosa and may highlight potential targets for treating the effects of cigarette smoking. Supplementary Information: The online version contains supplementary material available at 10.1186/s43042-022-00268-y.

6.
Saudi J Biol Sci ; 28(1): 612-622, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33424347

ABSTRACT

Infection with the human papillomaviruses (HPV) often involves the epigenetic modification of the host genome. Despite its prevalence among the population, host genome methylation in HPV-induced warts is not clearly understood. In this study, genome-wide methylation profiling was carried out on paired healthy skin and wart samples in order to investigate the effects that benign HPV infection has on gene methylation status. To overcome this gap in knowledge, paired wart (n = 12) and normal skin (n = 12) samples were obtained from Arab males in order to perform DNA extraction and subsequent genome-wide methylation profiling on the Infinium Methylation EPIC Bead Chip microarray. Analysis of differential methylation revealed a clear pattern of discrimination between the wart and normal skin samples. In warts, the most differentially methylated (DM) genes included long non-coding RNAs (AC005884, AL049646.2, AC126121.2, AP001790.1, and AC107959.3), microRNAs (MIR374B, MIR596, MIR1255B1, MIR26B, and MIR196A2),snoRNAs (SNORD114-22, SNORD70, and SNORD114-31), pseudogenes (AC069366.1, RNU4ATAC11P, AC120057.1, NANOGP3, AC106038.2, TPT1P2, SDC4P, PKMP3, and VN2R3P), and protein-coding genes (AREG, GJB2, C12orf71, AC020909.2, S100A8, ZBED2, FABP7, and CYSLTR1). In addition, pathway analysis revealed that, among the most differentially methylated genes, STAT5A, RARA, MEF2D, MAP3K8, and THRA were the common regulators. It can be observed that HPV-induced warts involve a clear and unique epigenetic alteration to the host genome.

7.
Viruses ; 12(12)2020 12 09.
Article in English | MEDLINE | ID: mdl-33316899

ABSTRACT

Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each other creates optimal opportunities for disease transmission. The Hashemite Kingdom of Jordan and the Kingdom of Saudi Arabia are two countries that have witnessed mass gatherings due to the arrival of Syrian refugees and the annual Hajj season. The mass migration of people not only brings exotic diseases to these regions but also brings new diseases back to their own countries, e.g., the outbreak of MERS in South Korea. Many emerging pathogens originate in bats, and more than 30 bat species have been identified in these two countries. Some of those bat species are known to carry viruses that cause deadly diseases in other parts of the world, such as the rabies virus and coronaviruses. However, little is known about bats and the pathogens they carry in Jordan and Saudi Arabia. Here, the importance of enhanced surveillance of bat-borne infections in Jordan and Saudi Arabia is emphasized, promoting the awareness of bat-borne diseases among the general public and building up infrastructure and capability to fill the gaps in public health preparedness to prevent future pandemics.


Subject(s)
Chiroptera/virology , Communicable Diseases, Emerging/epidemiology , Coronavirus/isolation & purification , Public Health , Zoonoses/epidemiology , Animals , COVID-19 , Communicable Diseases, Emerging/virology , Coronavirus/classification , Coronavirus/pathogenicity , Disease Outbreaks/prevention & control , Humans , Jordan , Saudi Arabia , Zoonoses/transmission , Zoonoses/virology
8.
BMC Med Genomics ; 13(1): 100, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641122

ABSTRACT

BACKGROUND: Low-risk HPV infection has not been the subject of epigenetic investigation. The present study was carried out in order to investigate the methylation status of CpG sites in non-genital cutaneous warts. METHODS: Genomic DNA was extracted from 24 paired epidermal samples of warts and normal skin. DNA samples were bisulfite converted and underwent genome-wide methylation profiling using the Infinium MethylationEPIC BeadChip Kit. RESULTS: From a total of 844,234 CpG sites, 56,960 and 43,040 CpG sites were found to be hypo- and hypermethylated, respectively, in non-genital cutaneous warts. The most differentially methylated CpG sites in warts were located within the C10orf26, FAM83H-AS1, ZNF644, LINC00702, GSAP, STAT5A, HDAC4, NCALD, and EXOC4 genes. CONCLUSION: Non-genital cutaneous warts exhibit a unique CpG methylation signature.


Subject(s)
CpG Islands , DNA Methylation , Epigenesis, Genetic , Genome, Human , Skin Diseases/genetics , Warts/genetics , Female , Humans , Male , Promoter Regions, Genetic
9.
Vet Sci ; 7(2)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331280

ABSTRACT

Decades of selective breeding for commercial purposes have rendered the broiler chicken (Gallus gallus domesticus) highly susceptible to heat and cold stress. A multitude of studies have documented the effects of thermal manipulation (TM) on broiler thermotolerance during periods of post-hatch heat stress, but very few have focused on the effect of TM on a broiler's ability to withstand cold stress. Therefore, the primary objective of the current study is to determine the effects of TM on the acquisition of thermotolerance in broilers via their expression of the stress-associated 70 kilodalton heat shock protein (Hsp70) gene and heat shock factor 3 (HSF3) gene. Briefly, Hubbard broiler embryos were subject to TM by increasing the incubation temperature to 39 °C and 65% relative humidity (RH) for 18 h daily, from embryonic days (ED) 10 to 18. Broilers were then exposed to cold stress by decreasing the room temperature to 16 °C during post-hatch days 32 to 37. After thermal challenge, broilers were euthanized and hepatic and splenic tissues were collected. Our results showed that TM decreased the hatchability rate and body temperature but improved the body weight gain. TM generally decreased the hepatic expression but did not change the splenic expression of HSF3 during cold stress. In contrast, both hepatic and splenic Hsp70 expression decreased during cold stress. The results of the present study may suggest that TM significantly affects a broiler's genetic response to cold stress.

10.
BMC Med Genomics ; 13(1): 35, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32151264

ABSTRACT

BACKGROUND: The human papillomaviruses (HPV) are a group of viruses that, depending on the strain, can cause cancer or the formation of benign growths known as warts. Scarce information exists with regard to the genetic nature of non-genital cutaneous warts induced by the human papillomavirus (HPV). METHODS: The main purpose of this study is to investigate the differences between the gene expression profiles of common warts and healthy skin in HPV-positive individuals by RNA sequencing on the Illumina HiSeq 2500. After obtaining shave biopsies of common warts and healthy skin from twelve Arab males, we were able to analyze the transcriptomes of 24 paired cases and controls. RESULTS: Common warts were found to possess a highly significant and unique molecular signature. Many of the most up-regulated (KRT16, EPGN, and ABCG4) and down-regulated genes (C15orf59, CYB561A3, and FCGRT) in warts were the subject of little investigation in the published literature. Moreover, the top 500 differentially expressed genes were found to be associated with immune and autoimmune pathways, such as the neutrophil degranulation, toll-like receptor 7/8 (TLR 7/8) cascade, toll-like receptor 9 (TLR9) cascade, and toll-like receptor 10 (TLR10) pathways, among others. CONCLUSIONS: Our findings are particularly important because they serve as the most comprehensive to date with regard to the modulation of human skin gene expression by HPV infection.


Subject(s)
Alphapapillomavirus , Down-Regulation , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Skin , Up-Regulation , Warts , Adult , Alphapapillomavirus/genetics , Alphapapillomavirus/metabolism , Humans , Male , Skin/metabolism , Skin/pathology , Skin/virology , Warts/genetics , Warts/metabolism , Warts/pathology
11.
Int J Med Sci ; 17(2): 191-206, 2020.
Article in English | MEDLINE | ID: mdl-32038103

ABSTRACT

Epigenetic alteration of host DNA is a common occurrence in both low- and high-risk human papillomavirus (HPV) infection. Although changes in promoter methylation have been widely studied in HPV-associated cancers, they have not been the subject of much investigation in HPV-induced warts, which are a temporary manifestation of HPV infection. The present study sought to examine the differences in promoter methylation between warts and normal skin. To achieve this, DNA was extracted from 24 paired wart and normal skin samples and inputted into the Infinium MethylationEPIC BeadChip microarray. Differential methylation analysis revealed a clear pattern of hyper- and hypomethylation in warts compared to normal skin, and the most differentially methylated promoters were found within the EIF3EP2, CYSLTR1, C10orf99, KRT6B, LAMA4, and H3F3B genes as well as the C9orf30 pseudogene. Moreover, pathway analysis showed that the H3F3A, CDKN1A, and MAPK13 genes were the most common regulators among the most differentially methylated promoters. Since the tissue samples were excised from active warts, however, this differential methylation could either be a cellular response to HPV infection or an HPV-driven process to establish the wart and/or promote disease progression. Conclusively, it is apparent that HPV infection alters the methylation status of certain genes to possibly initiate the formation of a wart and maintain its presence.


Subject(s)
Epigenesis, Genetic/genetics , Epigenome/genetics , Promoter Regions, Genetic/genetics , Warts/genetics , Antimicrobial Cationic Peptides/genetics , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Histones/genetics , Humans , Keratin-6/genetics , Laminin/genetics , Male , Mitogen-Activated Protein Kinase 13/genetics , Papillomaviridae/pathogenicity , Papillomavirus Infections/genetics , Receptors, Leukotriene/genetics , Whole Genome Sequencing
12.
Animals (Basel) ; 10(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941014

ABSTRACT

Thermal stress is a major source of oxidative damage in the broiler chicken (Gallus gallus domesticus) due to the latter's impaired metabolic function. While heat stress has been extensively studied in broilers, the effects of cold stress on broiler physiologic and oxidative function are still relatively unknown. The present study aimed to understand how thermal manipulation (TM) might affect a broiler's oxidative response to post-hatch thermal stress in terms of the mRNA expression of the catalase, NADPH oxidase 4 (NOX4), and superoxide dismutase 2 (SOD2) genes. During embryonic days 10 to 18, TM was carried out by raising the temperature to 39 °C at 65% relative humidity for 18 h/day. To induce heat stress, room temperature was raised from 21 to 35 °C during post-hatch days (PD) 28 to 35, while cold stress was induced during PD 32 to 37 by lowering the room temperature from 21 to 16 °C. At the end of the thermal stress periods, a number of chickens were euthanized to extract hepatic and splenic tissue from the heat-stressed group and cardiac, hepatic, muscular, and splenic tissue from the cold-stressed group. Catalase, NOX4, and SOD2 expression in the heart, liver, and spleen were decreased in TM chickens compared to controls after both cold and heat stress. In contrast, the expression levels of these genes in the breast muscles of the TM group were increased or not affected. Moreover, TM chicks possessed an increased body weight (BW) and decreased cloacal temperature (TC) compared to controls on PD 37. In addition, TM led to increased BW and lower TC after both cold and heat stress. Conclusively, our findings suggest that TM has a significant effect on the oxidative function of thermally stressed broilers.

13.
Biomolecules ; 9(12)2019 11 21.
Article in English | MEDLINE | ID: mdl-31766385

ABSTRACT

: Infection with the human papillomavirus (HPV) is a common occurrence among the global population, with millions of new cases emerging on an annual basis. Dysregulated microRNA (miRNA) expression is increasingly being identified to play a role in a number of different diseases, especially in the context of high-risk HPV infection. The present study investigated the miRNA expression profiles of warts induced by low-risk HPV. In warts, miR-27b, miR-24-1, miR-3654, miR-647, and miR-1914 were downregulated while miR-612 was upregulated compared to normal skin. Using miRTargetLink Human, experimentally supported evidence was obtained showing that miR-27b targeted the vascular endothelial growth factor C (VEGFC) and CAMP-responsive element binding protein 1 (CREB1) genes. The VEGFC and CREB1 genes have been reported to be involved in tumorigenesis and wart formation, respectively. Similarly, the oxidized low-density lipoprotein receptor 1 (OLR1) gene, which plays an important role in the humoral immunity of the skin, and the plexin D1 (PLXND1) gene, which is highly expressed in tumor vasculature, were both found to be common targets of miR-27b, miR-1914, and miR-612.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Papillomaviridae/physiology , Skin/virology , Warts/virology , Gene Ontology , Gene Regulatory Networks , Humans , MicroRNAs/metabolism
14.
Int J Mol Sci ; 20(19)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569353

ABSTRACT

HPV infection is one of the most commonly transmitted diseases among the global population. While it can be asymptomatic, non-genital HPV infection often gives rise to cutaneous warts, which are benign growths arising from the epidermal layer of the skin. This study aimed to produce a global analysis of the ways in which cutaneous wart formation affected the CpG island methylome. The Infinium MethylationEPIC BeadChip microarray was utilized in order to quantitatively interrogate CpG island methylation in genomic DNA extracted from 24 paired wart and normal skin samples. Differential methylation analysis was carried out by means of assigning a combined rank score using RnBeads. The 1000 top-ranking CpG islands were then subject to Locus Overlap Analysis (LOLA) for enrichment of genomic ranges, while signaling pathway analysis was carried out on the top 100 differentially methylated CpG islands. Differential methylation analysis illustrated that the most differentially methylated CpG islands in warts lay within the ITGB5, DTNB, RBFOX3, SLC6A9, and C2orf27A genes. In addition, the most enriched genomic region sets in warts were Sheffield's tissue-clustered DNase hypersensitive sites, ENCODE's segmentation and transcription factor binding sites, codex sites, and the epigenome sites from cistrome. Lastly, signaling pathway analysis showed that the GRB2, GNB1, NTRK1, AXIN1, and SKI genes were the most common regulators of the genes associated with the top 100 most differentially methylated CpG islands in warts. Our study shows that HPV-induced cutaneous warts have a clear CpG island methylation profile that sets them apart from normal skin. Such a finding could account for the temporary nature of warts and the capacity for individuals to undergo clinical remission.


Subject(s)
DNA Methylation , Dermatitis/genetics , Epigenesis, Genetic , Epigenomics , Genome, Human , Papillomavirus Infections/genetics , CpG Islands , Dermatitis/virology , Epigenomics/methods , Gene Expression Profiling , Humans , Papillomavirus Infections/virology , Transcriptome
15.
Genes (Basel) ; 11(1)2019 12 27.
Article in English | MEDLINE | ID: mdl-31892232

ABSTRACT

The human papillomaviruses (HPV) are a group of double-stranded DNA viruses that exhibit an exclusive tropism for squamous epithelia. HPV can either be low- or high-risk depending on its ability to cause benign lesions or cancer, respectively. Unsurprisingly, the majority of epigenetic research has focused on the high-risk HPV types, neglecting the low-risk types in the process. Therefore, the main objective of this study is to better understand the epigenetics of wart formation by investigating the differences in methylation between HPV-induced cutaneous warts and normal skin. A number of clear and very significant differences in methylation patterns were found between cutaneous warts and normal skin. Around 55% of the top-ranking 100 differentially methylated genes in warts were protein coding, including the EXOC4, KCNU, RTN1, LGI1, IRF2, and NRG1 genes. Additionally, non-coding RNA genes, such as the AZIN1-AS1, LINC02008, and MGC27382 genes, constituted 11% of the top-ranking 100 differentially methylated genes. Warts exhibited a unique pattern of methylation that is a possible explanation for their transient nature. Since the genetics of cutaneous wart formation are not completely known, the findings of the present study could contribute to a better understanding of how HPV infection modulates host methylation to give rise to warts in the skin.


Subject(s)
DNA Methylation , Papillomaviridae/pathogenicity , Papillomavirus Infections/genetics , Warts/virology , Whole Genome Sequencing/methods , Arabs/genetics , Case-Control Studies , Epigenesis, Genetic , Gene Regulatory Networks , Humans , Jordan , Male , Papillomaviridae/classification , RNA, Untranslated/genetics , Warts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...