Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(5): e11372, 2024 May.
Article in English | MEDLINE | ID: mdl-38742184

ABSTRACT

Large-scale barcoding projects help to aggregate information on genetic variability of multiple species throughout their ranges. Comparing DNA sequences of both non-conspecific and conspecific individuals from distant parts of their ranges helps to compare level of genetic isolation-by-distance patterns in different species and adaptive types. We compared mitochondrial CO1 gene sequences of 223 spiders from Georgia (Caucasus), representing 124 species and eight families, with 3097 homological sequences from spiders mostly from Europe, but also from other parts of the World. In most families, a significant isolation-by distance pattern was observed on family level. On species level, a significant isolation-by-distance was observed in 40 species, although this low proportion is most likely related to a lack of data. Simultaneously, remarkable differences in spatial structure were shown for different species. Although the majority of the studied species have a broad western Palearctic range, web-building spiders from families Araneidae, Theridiidae, and Linyphiidae are less isolated spatially than flower spiders (Thomisidae), jumping spiders (Salticidae), wolf spiders (Lycosidae), sac spiders (Clubionidae), and ground spiders (Gnaphosidae). This pattern is related with more common ballooning in web building than in actively hunting spiders, which commonly remain isolated since preglacial time. Ground spiders build the most isolated populations in the Caucasus.

2.
Ecol Evol ; 13(7): e10335, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37496759

ABSTRACT

To assess the genetic structure of Ponto-Caspian brown trout (Salmo trutta complex) populations, we analyzed both mitochondrial DNA sequences and genotypes at 10 microsatellite loci of fish caught in the Black Sea and from nine river catchments in Georgia, flowing into either the Black or Caspian seas. The results show that: (1) there is substantial genetic differentiation among Ponto-Caspian trout populations, both among the populations of different nominal species and within those of the same species; (2) the genetic distance between conspecific populations from the Black and Caspian Sea basins exceeds that among the populations within the same basin. Moreover, within drainages, genetic distance correlates with the geographic distance; (3) the Black Sea itself is not a barrier to gene flow among the watersheds draining into the Black Sea; (4) some populations in the headwaters of the rivers draining into the Black Sea Basin fall out of this pattern and likely form a separate, non-anadromous (resident) taxon, previously described from northeastern Turkey as Salmo rizeensis. This hypothesis is supported by mitochondrial DNA phylogeny. The presence of both anadromous and resident populations in a single river basin calls for a substantial re-thinking of speciation patterns and taxonomy of Eurasian brown trout.

3.
Sci Rep ; 11(1): 17985, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504229

ABSTRACT

This study clarifies the role of refugia and landscape permeability in the formation of the current genetic structure of peoples of the Caucasus. We report novel genome-wide data for modern individuals from the Caucasus, and analyze them together with available Paleolithic and Mesolithic individuals from Eurasia and Africa in order (1) to link the current and ancient genetic structures via landscape permeability, and (2) thus to identify movement paths between the ancient refugial populations and the Caucasus. The ancient genetic ancestry is best explained by landscape permeability implying that human movement is impeded by terrain ruggedness, swamps, glaciers and desert. Major refugial source populations for the modern Caucasus are those of the Caucasus, Anatolia, the Balkans and Siberia. In Rugged areas new genetic signatures take a long time to form, but once they do so, they remain for a long time. These areas act as time capsules harboring genetic signatures of ancient source populations and making it possible to help reconstruct human history based on patterns of variation today.


Subject(s)
Genome, Human , Genomics/methods , Genotype , Human Migration/history , White People/genetics , Chromosomes, Human, Y/genetics , DNA/genetics , DNA/isolation & purification , Databases, Genetic , Genetic Drift , Genetic Variation , Georgia (Republic) , History, 21st Century , History, Ancient , Humans , Male , Pedigree , Refugees/history , Russia , Turkey
4.
BMC Evol Biol ; 20(1): 122, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938384

ABSTRACT

BACKGROUND: The majority of parthenogenetic vertebrates derive from hybridization between sexually reproducing species, but the exact number of hybridization events ancestral to currently extant clonal lineages is difficult to determine. Usually, we do not know whether the parental species are able to contribute their genes to the parthenogenetic vertebrate lineages after the initial hybridization. In this paper, we address the hypothesis, whether some genotypes of seven phenotypically distinct parthenogenetic rock lizards (genus Darevskia) could have resulted from back-crosses of parthenogens with their presumed parental species. We also tried to identify, as precise as possible, the ancestral populations of all seven parthenogens. RESULTS: We analysed partial mtDNA sequences and microsatellite genotypes of all seven parthenogens and their presumed ansectral species, sampled across the entire geographic range of parthenogenesis in this group. Our results confirm the previous designation of the parental species, but further specify the maternal populations that are likely ancestral to different parthenogenetic lineages. Contrary to the expectation of independent hybrid origins of the unisexual taxa, we found that genotypes at multiple loci were shared frequently between different parthenogenetic species. The highest proportions of shared genotypes were detected between (i) D. sapphirina and D. bendimahiensis and (ii) D. dahli and D. armeniaca, and less often between other parthenogens. In case (ii), genotypes at the remaining loci were notably distinct. CONCLUSIONS: We suggest that both observations (i-ii) can be explained by two parthenogenetic forms tracing their origin to a single initial hybridization event. In case (ii), however, occasional gene exchange between the unisexual and the parental bisexual species could have taken place after the onset of parthenogenetic reproduction. Indeed, backcrossed polyploid hybrids are relatively frequent in Darevskia, although no direct evidence of recent gene flow has been previously documented. Our results further suggest that parthenogens are losing heterozygosity as a result of allelic conversion, hence their fitness is expected to decline over time as genetic diversity declines. Backcrosses with the parental species could be a rescue mechanism which might prevent this decline, and therefore increase the persistance of unisexual forms.


Subject(s)
Genotype , Lizards , Parthenogenesis , Alleles , Animals , Genetic Variation , Lizards/genetics , Microsatellite Repeats
5.
PLoS One ; 15(6): e0233680, 2020.
Article in English | MEDLINE | ID: mdl-32511235

ABSTRACT

We generated a phylogeny for Caucasian rock lizards (Darevskia), and included six other families of true lizards (Lacertini), based on complete mitochondrial genome analysis. Next-generation sequencing (NGS) of genomic DNA was used to obtain 16 new mitogenomes of Darevskia. These, along with 35 sequences downloaded from GenBank: genera Darevskia, Zootoca, Podarcis, Phoenicolacerta, Takydromus, Lacerta, and Eremias-were used in the analysis. All four analytical methods (Bayesian Inference, BI; Maximum Likelihood, ML; Maximum Parsimony, MP; and Neighbor-Joining, NJ) showed almost congruent intra-generic topologies for Darevskia and other lizard genera. However, ML and NJ methods on one side, and BI and MP methods on the other harvested conflicting phylogenies. The ML/NJ topology supports earlier published separation of Darevskia into three mitochondrial clades (Murphy, Fu, Macculloch, Darevsky, and Kupinova, 2000), but BI and MP topologies support that the basal branching occurred between D. parvula from the western Lesser Caucasus and the rest of Darevskia. All topologies altered the phylogenetic position of some individual species, including D. daghestanica, D. derjugini, and D. chlorogaster. Reanalysis after excluding four saturated genes from the data set, and excluding genus Eremias gives fully convergent topologies. The most basal branching for true lizards was between Far Eastern Takydromus and the Western Eurasian genera (BI). Comparing phylogenetic performance of individual genes relative to whole mitogenome data, concatenated 16S RNA (the least saturated gene in our analyses) and Cytochrome b genes generate a robust phylogeny that is fully congruent with that based on the complete mitogenome.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial , Lizards/genetics , Models, Genetic , Phylogeny , Algorithms , Animals , DNA, Mitochondrial/isolation & purification , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Ecol Evol ; 8(5): 2645-2658, 2018 03.
Article in English | MEDLINE | ID: mdl-29531683

ABSTRACT

Current taxonomy of western Eurasian trout leaves a number of questions open; it is not clear to what extent some species are distinct genetically and morphologically. The purpose of this paper was to explore phylogeography and species boundaries in freshwater and anadromous trout from the drainages of the Black and the Caspian Seas (Ponto-Caspian). We studied morphology and mitochondrial phylogeny, combining samples from the western Caucasus within the potential range of five nominal species of trout that are thought to inhabit this region, and using the sequences available from GenBank. Our results suggest that the genetic diversity of trout in the Ponto-Caspian region is best explained with the fragmentation of catchments. (1) All trout species from Ponto-Caspian belong to the same mitochondrial clade, separated from the other trout since the Pleistocene; (2) the southeastern Black Sea area is the most likely place of diversification of this clade, which is closely related to the clades from Anatolia; (3) The species from the Black Sea and the Caspian Sea drainages are monophyletic; (4) except for the basal lineage of the Ponto-Caspian clade, Salmo rizeensis, all the lineages produce anadromous forms; (5) genetic diversification within the Ponto-Caspian clade is related to Pleistocene glacial waves; (6) the described morphological differences between the species are not fully diagnostic, and some earlier described differences depend on body size; the differences between freshwater and marine forms exceed those between the different lineages. We suggest a conservative taxonomic approach, using the names S. rizeensis and Salmo labrax for trout from the Black Sea basin and Salmo caspius and Salmo ciscaucasicus for the fish from the Caspian basin.

7.
Hum Biol ; 88(4): 287-300, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28826321

ABSTRACT

The analyses of 15 autosomal and 23 Y-chromosome DNA single-tandem-repeat loci in five rural populations from the Caucasus (four ethnically Georgian and one ethnically Armenian) indicated that two Georgian populations, one from the west and the other from the east of the Greater Caucasus Mountains, were both patrilineally and autosomally most differentiated from each other, and the other populations of Georgians and Armenians held an intermediate position between those two. This pattern may be due to human dispersal from two distinct glacial refugia in the last glacial period and the early Holocene, followed by less gene flow among the populations from the Greater Caucasus than among those from the rest of the Caucasus, where the populations have undergone substantial admixture in historical time. This hypothesis is supported by a strong correlation between genetic differentiation among the populations and landscape permeability to human migrations as determined by terrain ruggedness, forest cover, and snow cover. Although geographic patterns of autosomal and Y-chromosome DNA are not fully concordant, both are influenced by landscape permeability and show a similar east-west gradient. Our results suggest that this permeability was a stronger factor limiting gene flow among human populations in the Caucasus than were ethnic or linguistic boundaries.


Subject(s)
Ethnicity/genetics , Genetics, Population , Geography , Linguistics , Armenia , Chromosomes, Human, Y/genetics , Cluster Analysis , DNA, Mitochondrial/genetics , Emigration and Immigration , Gene Flow , Genetic Variation , Georgia (Republic) , Haplotypes , Humans , Microsatellite Repeats , Sequence Analysis, DNA , White People/genetics
8.
Hum Biol ; 86(2): 113-30, 2014.
Article in English | MEDLINE | ID: mdl-25397702

ABSTRACT

Publications that describe the composition of the human Y-DNA haplogroup in diffferent ethnic or linguistic groups and geographic regions provide no explicit explanation of the distribution of human paternal lineages in relation to specific ecological conditions. Our research attempts to address this topic for the Caucasus, a geographic region that encompasses a relatively small area but harbors high linguistic, ethnic, and Y-DNA haplogroup diversity. We genotyped 224 men that identified themselves as ethnic Georgian for 23 Y-chromosome short tandem-repeat markers and assigned them to their geographic places of origin. The genotyped data were supplemented with published data on haplogroup composition and location of other ethnic groups of the Caucasus. We used multivariate statistical methods to see if linguistics, climate, and landscape accounted for geographical diffferences in frequencies of the Y-DNA haplogroups G2, R1a, R1b, J1, and J2. The analysis showed significant associations of (1) G2 with wellforested mountains, (2) J2 with warm areas or poorly forested mountains, and (3) J1 with poorly forested mountains. R1b showed no association with environment. Haplogroups J1 and R1a were significantly associated with Daghestanian and Kipchak speakers, respectively, but the other haplogroups showed no such simple associations with languages. Climate and landscape in the context of competition over productive areas among diffferent paternal lineages, arriving in the Caucasus in diffferent times, have played an important role in shaping the present-day spatial distribution of patrilineages in the Caucasus. This spatial pattern had formed before linguistic subdivisions were finally shaped, probably in the Neolithic to Bronze Age. Later historical turmoil had little influence on the patrilineage composition and spatial distribution. Based on our results, the scenario of postglacial expansions of humans and their languages to the Caucasus from the Middle East, western Eurasia, and the East European Plain is plausible.


Subject(s)
Chromosomes, Human, Y , DNA/genetics , Environment , Language , White People/genetics , DNA, Mitochondrial/genetics , Emigration and Immigration , Ethnicity/genetics , Genetics, Population , Haplotypes/genetics , Humans , Linguistics , Male , Microsatellite Repeats , Middle East , Multivariate Analysis , Russia , Sequence Analysis, DNA
9.
J Hered ; 105(3): 345-53, 2014.
Article in English | MEDLINE | ID: mdl-24622972

ABSTRACT

We studied the distribution of the mitochondrial DNA haplotypes and microsatellite genotypes at 8 loci in 102 gray wolves, 57 livestock guarding dogs, and 9 mongrel dogs from Georgia (Caucasus). Most of the studied dogs had mitochondrial haplotypes clustered with presumably East Asian dog lineages, and most of the studied wolves had the haplotypes clustered with European wolves, but 20% of wolves and 37% of dogs shared the same mitochondrial haplotypes. Bayesian inference with STRUCTURE software suggested that more than 13% of the studied wolves had detectable dog ancestry and more than 10% of the dogs had detectable wolf ancestry. About 2-3% of the sampled wolves and dogs were identified, with a high probability, as first-generation hybrids. These results were supported by the relatedness analysis, which showed that 10% of wolves and 20% of dogs had closest relatives from an opposite group. The results of the study suggest that wolf-dog hybridization is a common event in the areas where large livestock guarding dogs are held in a traditional way, and that gene flow between dogs and gray wolves was an important force influencing gene pool of dogs for millennia since early domestication events. This process may have been terminated 1) in areas outside the natural range of gray wolves and 2) since very recent time, when humans started to more tightly control contacts of purebred dogs.


Subject(s)
DNA, Mitochondrial/genetics , Dogs/genetics , Gene Flow/genetics , Wolves/genetics , Animals , Base Sequence , Genetic Variation , Genetics, Population , Georgia (Republic) , Haplotypes/genetics , Hybridization, Genetic , Microsatellite Repeats/genetics , Pedigree , Phylogeny , Phylogeography , Sequence Analysis, DNA
10.
Mol Ecol ; 19(9): 1829-41, 2010 May.
Article in English | MEDLINE | ID: mdl-20345670

ABSTRACT

The taxonomic status of brown bears in the Caucasus remains unclear. Several morphs or subspecies have been identified from the morphological (craniological) data, but the status of each of these subspecies has never been verified by molecular genetic methods. We analysed mitochondrial DNA sequences (control region) to reveal phylogenetic relationships and infer divergence time between brown bear subpopulations in the Caucasus. We estimated migration and gene flow from both mitochondrial DNA and microsatellite allele frequencies, and identified possible barriers to gene flow among the subpopulations. Our suggestion is that all Caucasian bears belong to the nominal subspecies of Ursus arctos. Our results revealed two genetically and geographically distinct maternal haplogroups: one from the Lesser Caucasus and the other one from the Greater Caucasus. The genetic divergence between these haplogroups dates as far back as the beginning of human colonization of the Caucasus. Our analysis of the least-cost distances between the subpopulations suggests humans as a major barrier to gene flow. The low genetic differentiation inferred from microsatellite allele frequencies indicates that gene flow between the two populations in the Caucasus is maintained through the movements of male brown bears. The Likhi Ridge that connects the Greater and Lesser Caucasus mountains is the most likely corridor for this migration.


Subject(s)
Gene Flow , Genetics, Population , Phylogeny , Ursidae/genetics , Animals , Bayes Theorem , Cluster Analysis , DNA, Mitochondrial/genetics , Evolution, Molecular , Female , Gene Frequency , Genetic Drift , Genotype , Geography , Georgia (Republic) , Haplotypes , Male , Microsatellite Repeats , Models, Genetic , Sequence Analysis, DNA , Ursidae/classification
11.
C R Biol ; 332(5): 464-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19393978

ABSTRACT

Selection of breeding habitat plays a fundamental role in the reproductive success of urodeles and anurans. We studied the influence of water chemistry variables on the selection of a specific water resource as breeding habitat in Mertensiella caucasica. To determine the influence of water chemistry parameters on their habitat selection, we surveyed a total of 45 small river, streams and brooks in the Western Lesser Caucasus (northeastern Turkey and southwestern Georgia). The water samples taken from these localities were analyzed for 14 chemical variables and the results submitted to multiple logistic regression analysis in order to evaluate the influence of these parameters on the presence or absence of the species in the localities. Of these parameters, chloride concentration influenced the breeding habitat selection of Mertensiella caucasica significantly.


Subject(s)
Fresh Water/analysis , Salamandridae/physiology , Animals , Breeding , Chlorides/analysis , Ecosystem , Electric Conductivity , Fresh Water/chemistry , Georgia (Republic) , Hydrogen-Ion Concentration , Larva , Minerals/analysis , Oxygen/analysis , Salamandridae/growth & development , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...