Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 7021, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341396

ABSTRACT

Whereas an RBE > 1 is described for very low-energy X-ray beams (in the range of 25-50 kV), there is a consensus that the RBE of X-rays (from 0.1 to 3 MeV) is equal to 1, whatever the energy or dose rate of the beam. Comparisons of X-ray beam dose rates are scarce even though these beams are widely used in medical diagnosis or radiotherapy. By using two dose rates (0.63 and 2.5 Gy.min-1) of high-energy X-rays on normal endothelial cells (HUVECs), we have studied the clonogenic assay, but also viability/mortality, cell cycle analysis and measured cellular senescence by flow cytometry, and have performed gene analysis on custom arrays. In order to consolidate these data, we performed localized irradiation of exteriorized small intestine at 0.63 and 2.5 Gy.min-1. Interestingly, in vivo validation has shown a significantly higher loss of weight at the higher dose when irradiating to 19 Gy a small fragment of exteriorized small intestine of C57Bl6J mice. Nevertheless, no significant differences were observed in lesioned scores between the two dose rates, while bordering epithelium staining indicated twofold greater severe damage at 2.5 Gy.min-1 compared to 0.63 Gy.min-1 at one week post-irradiation. Taken together, these experiments systematically show that the relative biological effectiveness of photons is different from 1 when varying the dose rate of high-energy X-rays. Moreover, these results strongly suggest that, in support of clonogenic assay, multiparametric analysis should be considered to provide an accurate evaluation of the outcome of irradiated cells.


Subject(s)
Radiation Dosage , X-Rays , Animals , Cell Survival/radiation effects , Flow Cytometry , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Mice , Mice, Inbred C57BL , Phantoms, Imaging , Proof of Concept Study
2.
Hum Mutat ; 13(6): 464-75, 1999.
Article in English | MEDLINE | ID: mdl-10408776

ABSTRACT

To investigate the nature of somatic von Hippel-Lindau (VHL) mutations, we analyzed 173 primary sporadic human renal cell carcinomas for mutations of the VHL tumor suppressor gene, using polymerase chain reaction (PCR) and single-strand conformational polymorphism analysis (SSCP) of DNA. We detected abnormal SSCP pattern in 73 samples. After sequencing, we identified microdeletions in 58% of cases, microinsertions in 17%, nonsense mutations in 8%, and missense mutations in 17%. Among these mutations, 50% correspond to new mutations. VHL mutations were found only in the nonpapillary renal cell carcinoma (RCC) subtype, as previously reported. To compare somatic and germline mutations, we used the VHL database, which includes 507 mutations. The study of mutational events revealed a significant difference between somatic and germline mutations with mutations leading to truncated proteins observed in 78% of somatic mutations vs only 37% in germline mutations (P < 0.001). We postulated that a specific pattern of VHL mutations is associated with sporadic RCC. This pattern corresponds to mutations leading mainly to truncated proteins with few specific missense mutations. We then analyzed the occurrence of RCC in VHL families, based on the nature of mutations. We observed RCC in at least one member of the VHL families in 77% of cases with mutations leading to truncated proteins versus 55% in cases with missense mutations (P < 0.05). Thus, mutations resulting in truncated proteins may lead to a higher risk of RCC in VHL patients.


Subject(s)
Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Ligases , Proteins/genetics , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Adult , Aged , Databases, Factual , Female , Frameshift Mutation , Gene Deletion , Humans , Loss of Heterozygosity , Male , Middle Aged , Models, Genetic , Mutation , Mutation, Missense , Phenotype , Point Mutation , Polymorphism, Genetic , Polymorphism, Single-Stranded Conformational , Risk Factors , Von Hippel-Lindau Tumor Suppressor Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...