Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 16(2): 273-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24508304

ABSTRACT

Rett syndrome is a dominant X-linked disorder caused by point mutations (approximately 80%) or by deletions or insertions (approximately 15% to 18%) in the MECP2 gene. It is most common in females but lethal in males, with a distinctly different phenotype. Rett syndrome patients have severe neurological and behavioral problems. Clinical genetic testing laboratories commonly use characterized genomic DNA reference materials to assure the quality of the testing process; however, none are commercially available for MECP2 genetic testing. The Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with the genetic testing community and the Coriell Cell Repositories, established 27 new cell lines and characterized the MECP2 mutations in these and in 8 previously available cell lines. DNA samples from the 35 cell lines were tested by eight clinical genetic testing laboratories using DNA sequence analysis and methods to assess copy number (multiplex ligation-dependent probe amplification, semiquantitative PCR, or array-based comparative genomic hybridization). The eight common point mutations known to cause approximately 60% of Rett syndrome cases were identified, as were other MECP2 variants, including deletions, duplications, and frame shift and splice-site mutations. Two of the 35 samples were from males with MECP2 duplications. These MECP2 and other characterized genomic DNA samples are publicly available from the NIGMS Repository at the Coriell Cell Repositories.


Subject(s)
Genetic Testing/methods , Genetic Testing/standards , Methyl-CpG-Binding Protein 2/genetics , Reference Standards , Rett Syndrome/diagnosis , Rett Syndrome/genetics , Cell Line , Comparative Genomic Hybridization , Female , Humans , Male , Multiplex Polymerase Chain Reaction , Sequence Analysis, DNA
2.
Muscle Nerve ; 49(4): 593-600, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23893571

ABSTRACT

INTRODUCTION: Myotonia congenita due to protein truncating CLCN1 mutations is associated with variable patterns of inheritance. METHODS: Three family kindreds are described, all of whom possess protein truncating mutations (Y33X, fs503X, R894X). One lineage also has coexistent R894X, A313T, and A320V mutations. RESULTS: The Y33X mutation kinship has autosomal recessive inheritance and a severe phenotype when homozygous. The fs503X family has autosomal dominant inheritance and a moderate-to-severe phenotype. The A313T mutation kindred also has autosomal dominant inheritance but expresses a mild phenotype, except for the more severely affected compound heterozygotes. CONCLUSIONS: Early truncating mutations precluding dimerization are expected to be autosomal recessive and express a severe phenotype, while later mutations may be variable. The pedigrees presented here demonstrate that intrafamilial phenotypic variability may result from a dosage effect of an additional mutation, not necessarily variable expressivity. Mutations that have unexpected patterns of inheritance may represent allelic variability.


Subject(s)
Chloride Channels/genetics , Inheritance Patterns/genetics , Mutation/genetics , Myotonia Congenita/diagnosis , Myotonia Congenita/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged , Pedigree , Protein Multimerization/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...