Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38820234

ABSTRACT

Pulmonary fibrosis (PF) can be idiopathic or driven by a specific insult or disease process. Inflammation plays a role in the pathophysiology, the extent of which remains a longstanding topic of debate. More recently there has been increasing interest in a potential inciting role for aberrant lipid metabolism. Lipids are essential for the structure and function of all cell membranes but specifically in the lung for surfactant composition, intra and intercellular lipid mediators and lipofibroblasts. Clinically, there is evidence of increased lipid deposition in the subpleural space, and at a whole lung tissue level in PF. There is evidence of increased parenchymal lipid deposition and abnormal mediastinal fat shape on chest CT. A protective role for cholesterol lowering drugs including statins and ezetimibe has been described in PF. At a cellular level, fatty acid (FA), phospholipid (PL) and glucose metabolism are disordered, as is the production of lipid mediators. In this perspectives piece we put forward the argument that there is substantive clinical and biological evidence to support a role for aberrant lipid metabolism and lipid mediators in the pathogenesis of PF.

2.
J Clin Invest ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771648

ABSTRACT

Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, and this supports an anti-inflammatory phenotype. High laminar shear stress also induces flow-aligned cell elongation and front-rear polarity, but whether these are required for the anti-inflammatory phenotype is unclear. Here, we showed that Caveolin-1-rich microdomains polarize to the downstream end of ECs that are exposed to continuous high laminar flow. These microdomains were characterized by high membrane rigidity, filamentous actin (F-actin), and raft-associated lipids. Transient receptor potential vanilloid-type 4 (TRPV4) ion channels were ubiquitously expressed on the plasma membrane but mediated localized Ca2+ entry only at these microdomains where they physically interacted with clustered Caveolin-1. These focal Ca2+ bursts activated endothelial nitric oxide synthase (eNOS) within the confines of these domains. Importantly, we found that signaling at these domains required both cell body elongation and sustained flow. Finally, TRPV4 signaling at these domains was necessary and sufficient to suppress inflammatory gene expression, and exogenous activation of TRPV4 channels ameliorated the inflammatory response to stimuli both in vitro and in vivo. Our work revealed a polarized mechanosensitive signaling hub in arterial ECs that dampens inflammatory gene expression and promotes cell resilience.

3.
J Lipid Res ; 65(2): 100496, 2024 02.
Article in English | MEDLINE | ID: mdl-38185217

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.


Subject(s)
Pulmonary Alveolar Proteinosis , Animals , Mice , Humans , Pulmonary Alveolar Proteinosis/drug therapy , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/metabolism , Macrophages, Alveolar , Lung/metabolism , Macrophages/metabolism , Lipids
4.
Respirology ; 28(11): 1043-1052, 2023 11.
Article in English | MEDLINE | ID: mdl-37642207

ABSTRACT

BACKGROUND AND OBJECTIVE: There is increasing interest in the role of lipids in processes that modulate lung fibrosis with evidence of lipid deposition in idiopathic pulmonary fibrosis (IPF) histological specimens. The aim of this study was to identify measurable markers of pulmonary lipid that may have utility as IPF biomarkers. STUDY DESIGN AND METHODS: IPF and control lung biopsy specimens were analysed using a unbiased lipidomic approach. Pulmonary fat attenuation volume (PFAV) was assessed on chest CT images (CTPFAV ) with 3D semi-automated lung density software. Aerated lung was semi-automatically segmented and CTPFAV calculated using a Hounsfield-unit (-40 to -200HU) threshold range expressed as a percentage of total lung volume. CTPFAV was compared to pulmonary function, serum lipids and qualitative CT fibrosis scores. RESULTS: There was a significant increase in total lipid content on histological analysis of IPF lung tissue (23.16 nmol/mg) compared to controls (18.66 mol/mg, p = 0.0317). The median CTPFAV in IPF was higher than controls (1.34% vs. 0.72%, p < 0.001) and CTPFAV correlated significantly with DLCO% predicted (R2 = 0.356, p < 0.0001) and FVC% predicted (R2 = 0.407, p < 0.0001) in patients with IPF. CTPFAV correlated with CT features of fibrosis; higher CTPFAV was associated with >10% reticulation (1.6% vs. 0.94%, p = 0.0017) and >10% honeycombing (1.87% vs. 1.12%, p = 0.0003). CTPFAV showed no correlation with serum lipids. CONCLUSION: CTPFAV is an easily quantifiable non-invasive measure of pulmonary lipids. In this pilot study, CTPFAV correlates with pulmonary function and radiological features of IPF and could function as a potential biomarker for IPF disease severity assessment.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lipidomics , Humans , Pilot Projects , Lung , Tomography, X-Ray Computed/methods , Biomarkers , Lipids , Fibrosis , Retrospective Studies
5.
Circ Res ; 132(7): 849-863, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36876496

ABSTRACT

BACKGROUND: Removal of circulating plasma low-density lipoprotein cholesterol (LDL-C) by the liver relies on efficient endocytosis and intracellular vesicle trafficking. Increasing the availability of hepatic LDL receptors (LDLRs) remains a major clinical target for reducing LDL-C levels. Here, we describe a novel role for RNF130 (ring finger containing protein 130) in regulating plasma membrane availability of LDLR. METHODS: We performed a combination of gain-of-function and loss-of-function experiments to determine the effect of RNF130 on LDL-C and LDLR recycling. We overexpressed RNF130 and a nonfunctional mutant RNF130 in vivo and measured plasma LDL-C and hepatic LDLR protein levels. We performed in vitro ubiquitination assays and immunohistochemical staining to measure levels and cellular distribution of LDLR. We supplement these experiments with 3 separate in vivo models of RNF130 loss-of-function where we disrupted Rnf130 using either ASO (antisense oligonucleotides), germline deletion, or AAV CRISPR (adeno-associated virus clustered regularly interspaced short palindromic repeats) and measured hepatic LDLR and plasma LDL-C. RESULTS: We demonstrate that RNF130 is an E3 ubiquitin ligase that ubiquitinates LDLR resulting in redistribution of the receptor away from the plasma membrane. Overexpression of RNF130 decreases hepatic LDLR and increases plasma LDL-C levels. Further, in vitro ubiquitination assays demonstrate RNF130-dependent regulation of LDLR abundance at the plasma membrane. Finally, in vivo disruption of Rnf130 using ASO, germline deletion, or AAV CRISPR results in increased hepatic LDLR abundance and availability and decreased plasma LDL-C levels. CONCLUSIONS: Our studies identify RNF130 as a novel posttranslational regulator of LDL-C levels via modulation of LDLR availability, thus providing important insight into the complex regulation of hepatic LDLR protein levels.


Subject(s)
Liver , Receptors, LDL , Cholesterol, LDL/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Liver/metabolism , Carrier Proteins/metabolism , Ubiquitination , Lipoproteins, LDL/metabolism
6.
EMBO Mol Med ; 14(4): e15344, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35191199

ABSTRACT

Fragile X Mental Retardation protein (FMRP), widely known for its role in hereditary intellectual disability, is an RNA-binding protein (RBP) that controls translation of select mRNAs. We discovered that endoplasmic reticulum (ER) stress induces phosphorylation of FMRP on a site that is known to enhance translation inhibition of FMRP-bound mRNAs. We show ER stress-induced activation of Inositol requiring enzyme-1 (IRE1), an ER-resident stress-sensing kinase/endoribonuclease, leads to FMRP phosphorylation and to suppression of macrophage cholesterol efflux and apoptotic cell clearance (efferocytosis). Conversely, FMRP deficiency and pharmacological inhibition of IRE1 kinase activity enhances cholesterol efflux and efferocytosis, reducing atherosclerosis in mice. Our results provide mechanistic insights into how ER stress-induced IRE1 kinase activity contributes to macrophage cholesterol homeostasis and suggests IRE1 inhibition as a promising new way to counteract atherosclerosis.


Subject(s)
Atherosclerosis , Fragile X Mental Retardation Protein , Membrane Proteins , Protein Serine-Threonine Kinases , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Fragile X Mental Retardation Protein/metabolism , Membrane Proteins/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
8.
Front Immunol ; 12: 752856, 2021.
Article in English | MEDLINE | ID: mdl-34880857

ABSTRACT

Autoantibodies to multiple cytokines have been identified and some, including antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF), have been associated with increased susceptibility to infection. High levels of GM-CSF autoantibodies that neutralize signaling cause autoimmune pulmonary alveolar proteinosis (aPAP), an ultrarare autoimmune disease characterized by accumulation of excess surfactant in the alveoli, leading to pulmonary insufficiency. Defective GM-CSF signaling leads to functional deficits in multiple cell types, including macrophages and neutrophils, with impaired phagocytosis and host immune responses against pulmonary and systemic infections. In this article, we review the role of GM-CSF in aPAP pathogenesis and pulmonary homeostasis along with the increased incidence of infections (particularly opportunistic infections). Therefore, recombinant human GM-CSF products may have potential for treatment of aPAP and possibly other infectious and pulmonary diseases due to its pleotropic immunomodulatory actions.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Infections/immunology , Pulmonary Alveolar Proteinosis/immunology , Animals , Autoimmune Diseases/complications , Humans , Pulmonary Alveolar Proteinosis/complications
9.
Cell Metab ; 33(8): 1671-1684.e4, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34270928

ABSTRACT

FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.


Subject(s)
Bile Acids and Salts , Non-alcoholic Fatty Liver Disease , Animals , Bile , Bile Acids and Salts/metabolism , Humans , Lipids , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Phosphatidate Phosphatase/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
10.
iScience ; 24(6): 102537, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142046

ABSTRACT

Long non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (1700020I14Rik/Cyrano) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of in vitro and ex vivo methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice. Using CRISPR, we engineered a global OIP5-AS1 knockout (KO) mouse and demonstrated that female KO mice develop exacerbated heart failure following cardiac pressure overload (transverse aortic constriction [TAC]) but male mice do not. RNA-sequencing of wild-type and KO hearts suggest that OIP5-AS1 regulates pathways that impact mitochondrial function. Thus, these findings highlight OIP5-AS1 as a gene of interest in sex-specific differences in mitochondrial function and development of heart failure.

12.
Nat Commun ; 12(1): 74, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397965

ABSTRACT

The effective storage of lipids in white adipose tissue (WAT) critically impacts whole body energy homeostasis. Many genes have been implicated in WAT lipid metabolism, including tripartite motif containing 28 (Trim28), a gene proposed to primarily influence adiposity via epigenetic mechanisms in embryonic development. However, in the current study we demonstrate that mice with deletion of Trim28 specifically in committed adipocytes, also develop obesity similar to global Trim28 deletion models, highlighting a post-developmental role for Trim28. These effects were exacerbated in female mice, contributing to the growing notion that Trim28 is a sex-specific regulator of obesity. Mechanistically, this phenotype involves alterations in lipolysis and triglyceride metabolism, explained in part by loss of Klf14 expression, a gene previously demonstrated to modulate adipocyte size and body composition in a sex-specific manner. Thus, these findings provide evidence that Trim28 is a bona fide, sex specific regulator of post-developmental adiposity and WAT function.


Subject(s)
Adipocytes/metabolism , Gene Deletion , Glucose/metabolism , Obesity/pathology , Tripartite Motif-Containing Protein 28/genetics , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Adiposity , Animals , Body Weight , Diet , Diet, High-Fat , Energy Metabolism , Female , Gene Regulatory Networks , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Phenotype , Triglycerides/metabolism , Tripartite Motif-Containing Protein 28/deficiency
13.
Nat Immunol ; 21(7): 746-755, 2020 07.
Article in English | MEDLINE | ID: mdl-32514064

ABSTRACT

Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.


Subject(s)
Bacterial Infections/immunology , Bacterial Toxins/immunology , Hydroxycholesterols/metabolism , Interferons/isolation & purification , Phagocytes/immunology , Streptolysins/immunology , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Proteins/administration & dosage , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Cell Membrane Permeability/immunology , Cells, Cultured , Disease Models, Animal , Disease Susceptibility/immunology , Female , Host Microbial Interactions/immunology , Humans , Intravital Microscopy , Male , Mice , Mice, Transgenic , Phagocytes/cytology , Phagocytes/metabolism , Primary Cell Culture , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism , Streptolysins/administration & dosage , Streptolysins/metabolism
14.
Arterioscler Thromb Vasc Biol ; 40(2): 412-425, 2020 02.
Article in English | MEDLINE | ID: mdl-31852219

ABSTRACT

OBJECTIVE: Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS: Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.


Subject(s)
Atherosclerosis/genetics , Cholesterol/metabolism , Gene Silencing , MicroRNAs/genetics , RNA/genetics , Animals , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Blotting, Western , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , MicroRNAs/biosynthesis , Sex Factors
15.
Nature ; 567(7747): 187-193, 2019 03.
Article in English | MEDLINE | ID: mdl-30814737

ABSTRACT

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Subject(s)
Lipid Metabolism/genetics , Lipids/analysis , Lipids/genetics , Proteomics , Animals , HEK293 Cells , Humans , Lipid Metabolism/physiology , Lipids/blood , Lipids/classification , Liver/chemistry , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Obesity/genetics , Obesity/metabolism , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism
16.
Nat Commun ; 9(1): 3127, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087322

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a syndrome of reduced GM-CSF-dependent, macrophage-mediated surfactant clearance, dysfunctional foamy alveolar macrophages, alveolar surfactant accumulation, and hypoxemic respiratory failure for which the pathogenetic mechanism is unknown. Here, we examine the lipids accumulating in alveolar macrophages and surfactant to define the pathogenesis of PAP and evaluate a novel pharmacotherapeutic approach. In PAP patients, alveolar macrophages have a marked increase in cholesterol but only a minor increase in phospholipids, and pulmonary surfactant has an increase in the ratio of cholesterol to phospholipids. Oral statin therapy is associated with clinical, physiological, and radiological improvement in autoimmune PAP patients, and ex vivo statin treatment reduces cholesterol levels in explanted alveolar macrophages. In Csf2rb-/- mice, statin therapy reduces cholesterol accumulation in alveolar macrophages and ameliorates PAP, and ex vivo statin treatment increases cholesterol efflux from macrophages. These results support the feasibility of statin as a novel pathogenesis-based pharmacotherapy of PAP.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/drug therapy , Aged , Animals , Bronchoalveolar Lavage , Cholesterol/metabolism , Cytokine Receptor Common beta Subunit/genetics , Female , Gene Expression Profiling , Humans , Lipids/chemistry , Lung Diseases/diagnostic imaging , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Surfactants/therapeutic use , Surface-Active Agents , Tomography, X-Ray Computed
17.
Cell Metab ; 28(3): 432-448.e4, 2018 09 04.
Article in English | MEDLINE | ID: mdl-29937375

ABSTRACT

Pathogen burden accelerates atherosclerosis, but the mechanisms remain unresolved. Activation of the NLRP3 inflammasome is linked to atherogenesis. Here we investigated whether Chlamydia pneumoniae (C.pn) infection engages NLRP3 in promoting atherosclerosis. C.pn potentiated hyperlipidemia-induced inflammasome activity in cultured macrophages and in foam cells in atherosclerotic lesions of Ldlr-/- mice. C.pn-induced acceleration of atherosclerosis was significantly dependent on NLRP3 and caspase-1. We discovered that C.pn-induced extracellular IL-1ß triggers a negative feedback loop to inhibit GPR109a and ABCA1 expression and cholesterol efflux, leading to accumulation of intracellular cholesterol and foam cell formation. Gpr109a and Abca1 were both upregulated in plaque lesions in Nlrp3-/- mice in both hyperlipidemic and C.pn infection models. Mature IL-1ß and cholesterol may compete for access to the ABCA1 transporter to be exported from macrophages. C.pn exploits this metabolic-immune crosstalk, which can be modulated by NLRP3 inhibitors to alleviate atherosclerosis.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Atherosclerosis/microbiology , Chlamydophila pneumoniae/pathogenicity , Cholesterol/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Atherosclerosis/immunology , Atherosclerosis/pathology , Biological Transport , Caspase 1/metabolism , Female , Foam Cells/immunology , Foam Cells/pathology , Host Microbial Interactions , Inflammasomes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic/microbiology , Signal Transduction
18.
Nat Commun ; 8(1): 1620, 2017 11 20.
Article in English | MEDLINE | ID: mdl-29158473

ABSTRACT

Endothelial cells transduce mechanical forces from blood flow into intracellular signals required for vascular homeostasis. Here we show that endothelial NOTCH1 is responsive to shear stress, and is necessary for the maintenance of junctional integrity, cell elongation, and suppression of proliferation, phenotypes induced by laminar shear stress. NOTCH1 receptor localizes downstream of flow and canonical NOTCH signaling scales with the magnitude of fluid shear stress. Reduction of NOTCH1 destabilizes cellular junctions and triggers endothelial proliferation. NOTCH1 suppression results in changes in expression of genes involved in the regulation of intracellular calcium and proliferation, and preventing the increase of calcium signaling rescues the cell-cell junctional defects. Furthermore, loss of Notch1 in adult endothelium increases hypercholesterolemia-induced atherosclerosis in the descending aorta. We propose that NOTCH1 is atheroprotective and acts as a mechanosensor in adult arteries, where it integrates responses to laminar shear stress and regulates junctional integrity through modulation of calcium signaling.


Subject(s)
Arteries/metabolism , Mechanotransduction, Cellular , Receptor, Notch1/metabolism , Animals , Arteries/chemistry , Calcium/metabolism , Endothelial Cells/chemistry , Endothelial Cells/metabolism , Endothelium, Vascular/chemistry , Endothelium, Vascular/metabolism , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Receptor, Notch1/genetics , Stress, Mechanical
19.
J Clin Invest ; 127(10): 3741-3754, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28891815

ABSTRACT

Bile acids function not only as detergents that facilitate lipid absorption but also as signaling molecules that activate the nuclear receptor farnesoid X receptor (FXR). FXR agonists are currently being evaluated as therapeutic agents for a number of hepatic diseases due to their lipid-lowering and antiinflammatory properties. FXR is also essential for maintaining bile acid homeostasis and prevents the accumulation of bile acids. Elevated bile acids activate FXR, which in turn switches off bile acid synthesis by reducing the mRNA levels of bile acid synthesis genes, including cholesterol 7α-hydroxylase (Cyp7a1). Here, we show that FXR activation triggers a rapid posttranscriptional mechanism to degrade Cyp7a1 mRNA. We identified the RNA-binding protein Zfp36l1 as an FXR target gene and determined that gain and loss of function of ZFP36L1 reciprocally regulate Cyp7a1 mRNA and bile acid levels in vivo. Moreover, we found that mice lacking hepatic ZFP36L1 were protected from diet-induced obesity and steatosis. The reduced adiposity and antisteatotic effects observed in ZFP36L1-deficient mice were accompanied by impaired lipid absorption that was consistent with altered bile acid metabolism. Thus, the ZFP36L1-dependent regulation of bile acid metabolism is an important metabolic contributor to obesity and hepatosteatosis.


Subject(s)
Bile Acids and Salts/metabolism , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Bile Acids and Salts/genetics , Butyrate Response Factor 1 , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Fatty Liver/chemically induced , Fatty Liver/genetics , Fatty Liver/metabolism , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Obesity/chemically induced , Obesity/genetics , Obesity/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
20.
J Lipid Res ; 58(5): 941-954, 2017 05.
Article in English | MEDLINE | ID: mdl-28264879

ABSTRACT

Idiopathic pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of surfactant. Surfactant synthesis and secretion are restricted to epithelial type 2 (T2) pneumocytes (also called T2 cells). Clearance of surfactant is dependent upon T2 cells and macrophages. ABCG1 is highly expressed in both T2 cells and macrophages. ABCG1-deficient mice accumulate surfactant, lamellar body-loaded T2 cells, lipid-loaded macrophages, B-1 lymphocytes, and immunoglobulins, clearly demonstrating that ABCG1 has a critical role in pulmonary homeostasis. We identify a variant in the ABCG1 promoter in patients with PAP that results in impaired activation of ABCG1 by the liver X receptor α, suggesting that ABCG1 basal expression and/or induction in response to sterol/lipid loading is essential for normal lung function. We generated mice lacking ABCG1 specifically in either T2 cells or macrophages to determine the relative contribution of these cell types on surfactant lipid homeostasis. These results establish a critical role for T2 cell ABCG1 in controlling surfactant and overall lipid homeostasis in the lung and in the pathogenesis of human lung disease.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Pulmonary Surfactants/metabolism , A549 Cells , ATP Binding Cassette Transporter, Subfamily G, Member 1/deficiency , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Adult , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Animals , Cholesterol/biosynthesis , Cholesterol/metabolism , Female , Gene Expression Regulation , Gene Knockout Techniques , Homeostasis , Humans , Immunoglobulins/metabolism , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Middle Aged , Pulmonary Alveolar Proteinosis/metabolism , Pulmonary Alveolar Proteinosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...