Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 22(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36433198

ABSTRACT

Intelligent reflecting surfaces (IRS) and power-domain non-orthogonal multiple access (PD-NOMA) have recently gained significant attention for enhancing the performance of next-generation wireless communications networks. More specifically, IRS can smartly reconfigure the incident signal of the source towards the destination node, extending the wireless coverage and improving the channel capacity without consuming additional energy. On the other side, PD-NOMA can enhance the number of devices in the network without using extra spectrum resources. This paper proposes a new optimization framework for IRS-enhanced NOMA communications where multiple drones transmit data to the ground Internet of Things (IoT) devices under successive interference cancellation errors. In particular, the power budget of each drone, PD-NOMA power allocation of IoT devices, and the phase shift matrix of IRS are simultaneously optimized to enhance the total spectral efficiency of the system. Given the system model and optimization setup, the formulated problem is coupled with three variables, making it very complex and non-convex. Thus, this work first transforms and decouples the problem into subproblems and then obtains the efficient solution in two steps. In the first step, the closed-form solutions for the power budget and PD-NOMA power allocation subproblem at each drone are obtained through Karush-Kuhn-Tucker (KKT) conditions. In the second step, the subproblem of efficient phase shift design for each IRS is solved using successive convex approximation and DC programming. Numerical results demonstrate the performance of the proposed optimization scheme in comparison to the benchmark schemes.

2.
Sensors (Basel) ; 22(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36433313

ABSTRACT

Intelligent reflecting surfaces (IRS) and mobile edge computing (MEC) have recently attracted significant attention in academia and industry. Without consuming any external energy, IRS can extend wireless coverage by smartly reconfiguring the phase shift of a signal towards the receiver with the help of passive elements. On the other hand, MEC has the ability to reduce latency by providing extensive computational facilities to users. This paper proposes a new optimization scheme for IRS-enhanced mobile edge computing to minimize the maximum computational time of the end users' tasks. The optimization problem is formulated to simultaneously optimize the task segmentation and transmission power of users, phase shift design of IRS, and computational resource of mobile edge. The optimization problem is non-convex and coupled on multiple variables which make it very complex. Therefore, we transform it to convex by decoupling it into sub-problems and then obtain an efficient solution. In particular, the closed-form solutions for task segmentation and edge computational resources are achieved through the monotonical relation of time and Karush-Kuhn-Tucker conditions, while the transmission power of users and phase shift design of IRS are computed using the convex optimization technique. The proposed IRS-enhanced optimization scheme is compared with edge computing nave offloading, binary offloading, and edge computing, respectively. Numerical results demonstrate the benefits of the proposed scheme compared to other benchmark schemes.


Subject(s)
Benchmarking
SELECTION OF CITATIONS
SEARCH DETAIL
...