Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 72(5): 978-990, 2023 11.
Article in English | MEDLINE | ID: mdl-37294317

ABSTRACT

Due to the ongoing climate changes, temperate forests are increasingly exposed to fires. However, until now the functioning of post-fire temperate forest ecosystems with regard to used forest management method has been weakly recognized. Here, we examined three variants of forest restoration after fire (two variants of natural regeneration with no soil preparation-NR, and artificial restoration by planting following soil preparation-AR) regarding their environmental consequences in development of post-fire Scots pine (Pinus sylvestris) ecosystem. The study was conducted using a 15-year timespan in a long-term research site located in the Cierpiszewo area (N Poland) being one of the biggest post-fire grounds in European temperate forests in last decades. We focused on soil and microclimatic variables as well as on growth dynamics of post-fire pines generation. We found that the restoration rates of soil organic matter, carbon and most studied nutritional elements stocks were higher in NR plots than in AR. This could be primarily linked to the higher (p < 0.05) density of pines in naturally regenerated plots, and the subsequent faster organic horizon reconstruction after fire. The difference in tree density also involved regular differences in air and soil temperature among plots: consistently higher in AR than in both NR plots. In turn, lower water uptake by trees in AR implied that soil moisture was constantly the highest in this plot. Our study delivers strong arguments to pay more attention to restore post-fire forest areas with the use of natural regeneration with no soil preparation.


Subject(s)
Fires , Pinus sylvestris , Pinus , Ecosystem , Poland , Forests , Trees , Soil
2.
Molecules ; 26(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066411

ABSTRACT

Polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and stainless steel (SS) are commonly used in medicine and food production technologies. During contact with microorganisms on the surface of these materials, a microbial biofilm is formed. The biofilm structure is difficult to remove and promotes the development of pathogenic bacteria. For this reason, the inhibition of biofilm formation in medical and food production environments is very important. For this purpose, five naturally occurring compounds were used for antimicrobial screening tests. The two with the best antimicrobial properties were chosen to inhibit the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. After 3 days of exposure, thymol reduced the amount of biofilm of Pseudomonas aeruginosa within the range of 70-77% and 52-75% for Staphylococcus aureus. Carvacrol inhibited the formation of biofilms by up to 74-88% for Pseudomonas aeruginosa and up to 86-100% for Staphylococcus aureus. Those phenols decreased the enzyme activity of the biofilm by up to 40-100%. After 10 days of exposure to thymol, biofilm formation was reduced by 80-100% for Pseudomonas aeruginosa and by about 79-100% for Staphylococcus aureus. Carvacrol reduced the amount of biofilm by up to 91-100% for Pseudomonas aeruginosa and up to 95-100% for Staphylococcus aureus.


Subject(s)
Biofilms/drug effects , Cymenes/pharmacology , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Thymol/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chemistry, Pharmaceutical/trends , Food Technology/trends , Hydrolysis , Materials Testing , Stainless Steel , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...