Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 112(5): 733-742, 2024 05.
Article in English | MEDLINE | ID: mdl-38088136

ABSTRACT

Among all the cancers, colorectal cancer (CRC) has the third mortality rank in both genders. Cancer vaccines have shown promising results in boosting patients' immune systems to fight cancer. Using the IEDB database, we predicted mouse MHC-I (H2-Ld) binding epitopes from four tumor-associated antigens (APC, KRAS, TP53, and PIK3CA) and designed a multi-epitope vaccine. We expressed the candidate vaccine and encapsulated it into the cationic micelle with polyethyleneimine conjugated to oleic acid as its building blocks. We studied tumor inhibition effect, cytokine production, and lymphocyte proliferation in the mouse CRC model after vaccination. Our finding illustrated significant tumor growth inhibition in mouse models treated with the candidate nanovaccine. Besides the significant release of IFN-γ and IL-4 by immunized mouse spleen T-lymphocytes, T-cell proliferation assay results confirmed effective immune response after the vaccination. These results demonstrate the potential therapeutic effects of nanovaccines and could be a possible approach to CRC immunotherapy.


Subject(s)
Cancer Vaccines , Colorectal Neoplasms , Male , Humans , Female , Animals , Mice , Epitopes , Micelles , Antigens, Neoplasm , Colorectal Neoplasms/therapy , Lymphocyte Activation
2.
Adv Biomed Res ; 12: 126, 2023.
Article in English | MEDLINE | ID: mdl-37434917

ABSTRACT

Background: Nanotechnology has introduced valuable carriers for vaccine delivery. The success of vaccination depends on many factors, such as the intact and safe presentation of vaccine candidates to immune cells. We have conjugated branched PEI-2k and oleic acid (OL) as the building block of the cationic micelle. We aimed to introduce a novel carrier for vaccine candidates. Materials and Methods: We conjugated polyethyleneimine and OL (POA) to synthesize the building blocks of cationic micelles. The critical micelle concentration (CMC), size and zeta potential of micelles, and their stability in 60 days were determined. Loading, encapsulation efficiency, and in vitro release study were assessed using bovine serum albumin (BSA) as a protein model. Furthermore, the cytotoxicity and hemocompatibility of developed nanosized micelles were evaluated to ascertain the biocompatibility of fabricated micelles. Cell uptake of cationic micelles in the macrophage cell line was also followed up. Results: The conjugation of two polymer parts was confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance techniques. The CMC of the developed micelles was around 5.62 × 10-8 mg/ ml, whereas the loading and encapsulation efficiencies were 16.5% and 70%, respectively. The size and zeta potential of the cationic micelles were 96.53 ± 18.53 nm and 68.3 mV, respectively. The release of BSA from POA micelles after 8 and 72 hours was 8.5% and 82%, respectively. Finally, fluorescence microscopy showed that the prepared micelles were successfully and effectively taken up by RAW264.7 cells. Conclusion: These results may provide a cutting-edge vaccine delivery solution and open up a new avenue for future vaccine research.

3.
Folia Histochem Cytobiol ; 60(1): 13-23, 2022.
Article in English | MEDLINE | ID: mdl-35157300

ABSTRACT

INTRODUCTION: Breast cancer has been represented a challenging issue worldwide as it is one of the major leading causes of death among women. CD81 gene, a member of the tetraspanin protein family, has been associated with the development of human cancers. Genome editing technologies, particularly the CRISPR-Cas9 system, have shown rapid progress in gene function studies. In this study, we aimed to evaluate the ability of the CRISPR-Cas9 plasmid-based system to modify specific regions of the CD81 gene in the MDA-MB-231 breast cancer cell line. MATERIALS AND METHODS: Using bioinformatics database search, four different single guide RNAs (sgRNAs) to target exon 3 and exon 5 of the CD81 gene were designed. The intended sgRNAs sequences were cloned into the expression plasmid pSpCas9(BB)-2A-GFP (PX458) bearing sgRNA scaffold backbone, Cas9, and EGFP coding sequences, which was confirmed by colony PCR and sequencing. Transfection efficiency was determined by fluorescence microscopy and flow cytometry analysis. Gene editing efficiency was measured qualitatively and quantitatively using the T7E1 and TIDE software, respectively. RESULTS: Our data show that expression constructs were successfully introduced into MDA-MB-231 cells with an acceptable transfection efficiency. Two sgRNAs that were afforded to introduce significant mutations in their target regions were detected by TIDE software (p-value < 0.05). To the best of our knowledge, CD81 gene editing in these cells has been investigated for the first time in this study using the CRISPR/Cas9 technique. CONCLUSIONS: Taken together, our data show that the CRISPR-Cas9 system can change the genomic sequence in the target area of MDA-MB-231 cells. Along with previous studies, we propose forethought when using T7E1-based quantitative indel estimates, as comparing activities of multiple gRNAs with the T7E1 assay may lead to inaccurate conclusions. Instead, estimating non-homologous end-joining events (NHEJ) by Sanger sequencing and subsequent TIDE analysis is recommended.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Cell Line , Female , Gene Editing/methods , Humans , Mutation , Plasmids , Tetraspanin 28/genetics
4.
J Immunol Methods ; 497: 113123, 2021 10.
Article in English | MEDLINE | ID: mdl-34428402

ABSTRACT

Brucellosis is a well-known infectious disease in most parts of the world, especially in developing countries, common between humans and animals. Brucellosis is diagnosed by serological tests based on lipopolysaccharides (LPSs), which are bacterial cell wall antigens, and due to the similarities between LPSs antigens of some gram-negative bacterias, false-positive responses are inevitable. Alternatively, Outer membrane proteins (Omps), as antigenic conserved membrane proteins, can be used to diagnose brucellosis instead of LPS antigens. In this study, by using bioinformatics tools, linear B-cell epitopes were selected from Omp22, Omp25, and Omp31 antigens and fused with the rigid KP linker (K = Lysine, P=Proline). Designed gene cassette was cloned into pET-28a (+) vector and expressed recombinant protein was purified using Ni-NTA chromatography column and was confirmed with Poly-Histidine-HRP antibody. Finally, recombinant protein's seroreactivity with serum samples from 37 patients and 27 healthy individuals was evaluated by western blotting and enzyme-linked immunosorbent assay (ELISA) methods. Western blotting results showed high reactivity of the recombinant protein with serum samples of Brucella infected patients. ELISA results were analyzed using the receiver operating curve (ROC). Optical density cut-off point, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Youden index J for recombinant protein were > 0.809, 84.37%,83.78%,88.89%,88.57%, 79.31% and 0.72 respectively. Western blotting and ELISA results showed that our recombinant protein has good sensitivity and specificity for the diagnosis of brucellosis.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Blotting, Western , Brucella melitensis/immunology , Brucellosis/diagnosis , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte , Immunodominant Epitopes , Serologic Tests , Brucellosis/blood , Brucellosis/immunology , Case-Control Studies , Humans , Predictive Value of Tests , Recombinant Proteins/immunology , Reproducibility of Results
5.
Probiotics Antimicrob Proteins ; 13(1): 80-89, 2021 02.
Article in English | MEDLINE | ID: mdl-32661939

ABSTRACT

Since Brucella infection mostly occurs through the mucosal surfaces, immune response induced by vaccine that is delivered by a way of mucosal route can be drastically enhanced to control the brucellosis. Omp31is the major outer membrane protein of Brucella, and is considered as a protective antigen against Brucella infection. Accordingly, Lactococcus lactis has been used as an antigen-delivering vector to develop a vaccine-induced mucosal response for having a safer vaccination against brucellosis. A designed omp31 gene fused to the usp45 signal peptide and M6 cell wall anchor was sub cloned in the pNZ7021 expression vector, and a recombinant L. lactis displaying Omp31 was constructed. Omp31 protein expression was confirmed using Western blotting and immunofluorescence analysis. Animals were orally and intraperitoneally immunized with live or killed L. lactis expressing Omp31, respectively. The humoral and cellular immune responses were evaluated by measuring the specific cytokines and antibodies. sIgA, serum IgA, IgM, and total IgG antibodies significantly increased in the mice immunized with live recombinant L. lactis expressing Omp31 and also serum IgM, and total IgG antibodies significantly increased in mice immunized with killed recombinant L. lactis expressing Omp31. Among IgG subtypes, IgG2a response was significantly higher in both groups compared to IgG1. In mice groups immunized with recombinant L. lactis, the IFN-γ and IL-10 level elevated; however, there was no change in the level of IL-4. These results indicated that recombinants L. lactis induce both humoral and cellular immune responses in mice, and also vaccines based on L. lactis-derived live carriers are promising interventions against Brucella melitensis infections.


Subject(s)
Bacterial Outer Membrane Proteins , Brucella Vaccine , Brucella melitensis/genetics , Brucellosis , Lactococcus lactis , Microorganisms, Genetically-Modified , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Brucella Vaccine/genetics , Brucella Vaccine/immunology , Brucella melitensis/immunology , Brucellosis/immunology , Brucellosis/prevention & control , Female , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Mice , Mice, Inbred BALB C , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/immunology
6.
ACS Chem Neurosci ; 11(24): 4499-4515, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33283497

ABSTRACT

Recently, advances in the synthesis and development of multifunctional nanoparticle platforms have opened up great opportunities and advantages for specifically targeted delivery of genes of interest. BSA-coated niosome structures (NISM@B) can potentially improve the efficiency in vitro delivery of nucleic acid molecules and the transfection of genes. Few studies have reported the combined use of niosomes with nucleic acid as therapeutic agents or decoy oligodeoxynucleotides (ODNs). Herein, we synthesized NISM@B to encapsulate NANOG decoy ODN (NISM@B-DEC), after which the physicochemical characteristics and in vitro and in vivo properties of NISM@B-DEC were investigated. Our results regarding physicochemical characteristics revealed that the stable niosome nanocarrier system was successfully synthesized with a regular spherical shape and narrow size distribution with proper zeta-potential values and had an appropriate biocompatibility. The ODN release from the niosome nanocarrier system exhibited controlled and pH-dependent behavior as the best models to explain the ODN release profile. NISM@B-DEC was efficiently taken up by human glioblastoma cells (U87) and significantly inhibited cell growth. Finally, blockage of the NANOG pathway by NISM@B-DEC resulted in G1 cell cycle arrest, apoptosis, and cell death. In addition, NISM@B-DEC caused a significant decrease in tumor formation and improved wound-healing efficiency of the U87 cells. These findings confirm that NISM@B-DEC could potentially suppress the metastatic ability of these cells. It can be concluded that the presented nanocarrier system can be a promising approach for targeted gene delivery in cancer therapy.


Subject(s)
Glioblastoma , Liposomes , Apoptosis , Cell Proliferation , Glioblastoma/drug therapy , Humans , Nanog Homeobox Protein , Oligodeoxyribonucleotides
7.
Folia Histochem Cytobiol ; 58(3): 163-173, 2020.
Article in English | MEDLINE | ID: mdl-32978771

ABSTRACT

Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) is one of the major genome editing systems and allows changing DNA levels of an organism. Among several CRISPR categories, the CRISPR-Cas9 system has shown a remarkable progression rate over its lifetime. Recently, other tools including CRISPR-Cas12 and CRISPR-Cas13 have been introduced. CRISPR-Cas9 system has played a key role in the industrial cell factory's production and improved our understanding of genome function. Additionally, this system has been used as one of the major genome editing systems for the diagnosis and treatment of several infectious and non-infectious diseases. In this review, we discuss CRISPR biology, its versatility, and its application in biomedical engineering.


Subject(s)
Biomedical Engineering/methods , CRISPR-Cas Systems , Animals , Cell Engineering , Drug Discovery , Gene Editing/methods , Humans , Models, Biological
8.
J Cell Physiol ; 234(5): 6801-6809, 2019 05.
Article in English | MEDLINE | ID: mdl-30317587

ABSTRACT

Tissue and stem cell encapsulation andtransplantation were considered as promising tools in the treatment of patients with diabetes mellitus. The aim of this study was to evaluate the effect of microfluidic encapsulation on the differentiation of trabecular meshwork mesenchymal stem cells (TM-MSC), into insulin-producing cells (IPCs) both in vitro and in vivo. The presence of differentiated cells in microfibers (three dimensional [3D]) and tissue culture plates (TCPS; two dimensional [2D]) culture was evaluated by detecting mRNA and protein expression of pancreatic islet-specific markers as well as measuring insulin release of cells in response to glucose challenges. Finally, semi-differentiated cells in microfibers (3D) and 2D cultures were used to control the glucose level in diabetic rats. The results of this study showed that MSCs differentiated in alginate microfibers (fabricated by microfluidic device) express more Pdx-1 mRNA (1.938-fold, p-value: 0.0425) and Insulin mRNA (2.841-fold, p-value: 0.0001) compared with those cultured on TCPS. Furthermore, cell encapsulation in microfluidic derived microfibers decreased the level of blood glucose in diabetic rats. The approach used in this study showed the possibility of alginate microfibers as a matrix for differentiation of TM-MSCs (as a new source) into IPCs. In addition, it could minimize different steps in stem cell differentiation, handling, and encapsulation, which lead to loss of an unlimited number of cells.


Subject(s)
Cell Differentiation/physiology , Diabetes Mellitus, Experimental/pathology , Insulin-Secreting Cells/physiology , Mesenchymal Stem Cells/physiology , Trabecular Meshwork/physiology , Animals , Blood Glucose/metabolism , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Mesenchymal Stem Cells/metabolism , Microfluidics/methods , RNA, Messenger/metabolism , Rats , Trabecular Meshwork/metabolism
9.
J Cell Biochem ; 120(1): 940-950, 2019 01.
Article in English | MEDLINE | ID: mdl-30160776

ABSTRACT

CD20 molecule, a phosphoprotein with 297 amino acids and four transmembrane domains, is a member of MS4A protein family. Anti-CD20 antibodies such as ofatumumab, which have been developed for cancer treatment and has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. Rational engineering methods can be applied with reasonable success to improve functional characteristics of antibodies. Considering the importance of this issue, we have used in silico modeling approach for the improvement of ofatumumab monoclonal antibody. Four mutated variants of ofatumumab were developed and expressed in Chinese hamster ovary (CHO) cells along with the unmodified antibody. Analysis of affinity of the purified antibodies with CD20 showed significant improvement in antigen-binding characteristics of one of the variants compared with the control antibody. This study represents the first step toward development of the second generation ofatumumab antibody with improved affinity.


Subject(s)
Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/immunology , Antibody Affinity/immunology , Antigens, CD20/immunology , Drug Design , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD20/chemistry , B-Lymphocytes/immunology , CHO Cells , Cricetulus , Enzyme-Linked Immunosorbent Assay , Genetic Vectors/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Kinetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mutant Proteins , Mutation , Plasmids/genetics , Plasmids/immunology , Surface Plasmon Resonance , Transfection
10.
Biomed Pharmacother ; 109: 2415-2426, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30551501

ABSTRACT

B-lymphocyte antigen CD20 (called CD20) is known as an activated-glycosylated phosphoprotein which is expressed on the surface of all B-cells. CD20 is involved in the regulation of trans-membrane Ca2+ conductance and also play critical roles in cell-cycle progression during human B cell proliferation and activation. The appearance of monoclonal antibody (mAb) technology provided an effective field for targeted therapy in treatment of a variety of diseases such as cancer, and autoimmune diseases. Anti-CD20 is one of important antibodies which could be employed in treatment of several diseases. Increasing evidences revealed that efficacy of different anti-CD20 antibodies is implicated by their function. Hence, evaluation of anti-CD20 antibodies function could provide and introduce new anti-CD20 based therapies. In the present study, we summarized several applications of anti-CD20 antibodies in various immune related disorders including B-CLL (B-cell chronic lymphocytic leukemia), rheumatoid arthritis (RA), multiple sclerosis (MS) and melanoma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antigens, CD20/metabolism , Autoimmune Diseases/metabolism , B-Lymphocytes/metabolism , Neoplasms/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD20/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Treatment Outcome
11.
Iran Biomed J ; 22(3): 180-92, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28992681

ABSTRACT

Background: Ofatumumab, an anti-CD20 mAb, was approved in 2009 for the treatment of chronic lymphocytic leukemia. This mAb acts through immune-mediated mechanisms, in particular complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by natural killer cells as well as antibody-dependent phagocytosis by macrophages. Apoptosis induction is another mechanism of this antibody. Computational docking is the method of predicting the conformation of an antibody-antigen from its separated elements. Validation of the designed antibodies is carried out by docking tools. Increased affinity enhances the biological action of the antibody, which in turn improves the therapeutic effects. Furthermore, the increased antibody affinity can reduce the therapeutic dose of the antibody, resulting in lower toxicity and handling cost. Methods: Considering the importance of this issue, using in silico analysis such as docking and molecular dynamics, we aimed to find the important amino acids of the Ofatumumab antibody and then replaced these amino acids with others to improve antibody-binding affinity. Finally, we examined the binding affinity of antibody variants to antigen. Results: Our findings showed that variant 3 mutations have improved the characteristics of antibody binding compared to normal Ofatumumab antibodies. Conclusion: In the present study, the designed anti-CD20 antibodies showed to have potential for improved affinity compared to commercial Ofatumumab.

12.
Reprod Biol ; 17(4): 327-332, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28986276

ABSTRACT

Insulin-like peptide 5 (INSL5) is a member of the insulin superfamily peptide that interacts with the relaxin family peptide receptor 4 (RXFP4). Numerous recent studies have focused on the functional effects of INSL5 on fat and glucose metabolism. Although there is no evidence that the human sperm may be a candidate target of INSL5, it has been detected in mice testis and sperm. Therefore, the present study sought to analyze the localization and expression of RXFP4 on human sperm and determine the efficiency of INSL5 in human sperm. Normal semen samples were incubated in different doses and exposure time periods of INSL5. We analyzed sperm motility by computer-assisted sperm analysis (CASA) and ROS levels by flow cytometry using the MitoSOX™ Red probe. Localization and expression of RXFP4 were assayed by immunofluorescence and RT-PCR, respectively. The results confirmed the presence of RXFP4 in human spermatozoa, which localized in the neck and midpiece of sperm. Nested PCR showed the expression of RXFP4 in human sperm. INSL5 could attenuate generation of mitochondrial ROS at the 1, 10, 30, and 100nmol/L doses. This result was particularly noted in the 30nmol/L treated samples after 4h incubation. Total motility of sperm was significantly preserved in the 100nmol/L after 2h and in 30nmol/L after 4h incubation period. This study, for the first time, clarified the expression and localization of RXFP4 on human sperm and revealed the role of INSL5 in sperm motility and mitochondrial ROS generation in a dose-dependent manner.


Subject(s)
Insulin/pharmacology , Proteins/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Sperm Motility/drug effects , Spermatozoa/metabolism , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Male , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Spermatozoa/drug effects
13.
Haematologica ; 92(7): 992-3, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17606454

ABSTRACT

Alpha thalassemia (alpha-thal) is one of the most common hemoglobin (Hb) disorders in the world. Alpha-globin genes are located on chromosome 16. The majority of alpha-thal mutations are deletions but point mutations are found as well. Since the Iranian population is a mixture of different ethnic groups, frequency and distribution of alpha-globin mutations in various regions of the country need to be clarified. These findings can contribute to a wider understanding of this disorder.


Subject(s)
Hemoglobins, Abnormal/genetics , Mutation , alpha-Thalassemia/genetics , Gene Frequency , Humans , Iran/epidemiology , Molecular Epidemiology , alpha-Thalassemia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...