Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heart Rhythm ; 20(9): 1297-1306, 2023 09.
Article in English | MEDLINE | ID: mdl-37321384

ABSTRACT

BACKGROUND: Fidelity of electrogram sensing may reduce false alerts from an insertable cardiac monitor (ICM). OBJECTIVE: The purpose of this study was to assess the effect of vector length, implant angle, and patient factors on electrogram sensing using surface electrocardiogram (ECG) mapping. METHODS: Twelve separate precordial single-lead surface ECGs were acquired from 150 participants at 2 interelectrode distances (75 and 45 mm), at 3 vector angles (vertical, oblique, and horizontal), and in 2 postures (upright and supine). A subset of 50 patients also received a clinically indicated ICM implant in 1:1 ratio (Reveal LINQ [Medtronic, Minneapolis, MN]/BIOMONITOR III [Biotronik, Berlin, Germany]). All ECGs and ICM electrograms were analyzed by blinded investigators using DigitizeIt software (V2.3.3, Braunschweig, Germany). The P-wave visibility threshold was set at > 0.015 mV. Logistic regression was used to identify factors affecting P-wave amplitude. RESULTS: A total of 1800 tracings from 150 participants (44.5% [n = 68] female; median age 59 [35-73] years) were assessed. The median P- and R-wave amplitudes were 45% and 53% larger with vector lengths of 75 and 45 mm, respectively (P < .001 for both). The oblique orientation yielded the best P- and R-wave amplitudes, while posture change did not affect P-wave amplitude. Mixed effects modeling found that visible P-waves occur more frequently with a vector length of 75 mm than with 45 mm (86% vs 75%, respectively; P < .0001). A longer vector length improved both P-wave amplitude and visibility in all body mass index categories. There was a moderate correlation of P- and R-wave amplitudes from the ICM electrograms to those from surface ECG recordings (intraclass correlation coefficient 0.74 and 0.80, respectively). CONCLUSION: Longer vector length and oblique implant angle yielded the best electrogram sensing and are relevant considerations for ICM implantation procedures.


Subject(s)
Electrocardiography, Ambulatory , Electrocardiography , Humans , Female , Middle Aged , Electrocardiography, Ambulatory/methods , Electrocardiography/methods , Prostheses and Implants , Software , Germany
2.
J Electrocardiol ; 73: 42-48, 2022.
Article in English | MEDLINE | ID: mdl-35633601

ABSTRACT

BACKGROUND: Little data exists on electrogram sensing in current generation of miniaturized insertable cardiac monitors (ICMs). OBJECTIVE: To compare the sensing capability of ICM with different vector length: Medtronic Reveal LINQ (~40 mm) vs. Biotronik Biomonitor III (BM-III, ~70 mm). METHODS: De-identified remote monitoring transmissions from n = 40 patients with BM-III were compared with n = 80 gender and body mass index (BMI)-matched patients with Reveal LINQ. Digital measurement of P- and R-wave amplitude from calibrated ICM electrograms was undertaken by 3 investigators independently. Further, we evaluated the impact of BMI and gender on P-wave visibility. RESULTS: Patients in both groups were well matched for gender and BMI (53% male, mean BMI 26.7 kg/m2, both p = NS). Median P- and R-wave amplitude were 97% & 56% larger in the BM-III vs. LINQ [0.065 (IQR 0.039-0.10) vs. 0.033 (IQR 0.022-0.050) mV, p < .0001; & 0.78 (IQR 0.52-1.10) vs. 0.50 (IQR 0.41-0.89) mV, p = .012 respectively). The P/R-wave ratio was 36% greater with the BM-III (p < .001). The 25th percentile of P-wave amplitude for all 120 patients was .026 mV. Logistic regression analysis showed BM-III was more likely than LINQ to have P-wave amplitude ≥.026 mV (OR 7.47, 95%CI 1.965-29.42, p = .003), and increasing BMI was negatively associated with P-wave amplitude ≥.026 mV (OR 0.84, 95%CI 0.75-0.95, p = .004). However, gender was not significantly associated with P-wave amplitude ≥.026 mV (p = .37). CONCLUSION: The longer ICM sensing vector of BM-III yielded larger overall P- and R- wave amplitude than LINQ. Both longer sensing vector and lower BMI were independently associated with greater P-wave visibility.


Subject(s)
Electrocardiography, Ambulatory , Electrocardiography , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...