Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 Nov 28.
Article in English | MEDLINE | ID: mdl-38014932

ABSTRACT

Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.


Subject(s)
Endothelial Cells , Myocardial Infarction , Humans , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Metabolic Reprogramming , Oxidative Stress , Glycolysis , Glutathione/metabolism , Phosphofructokinase-2/metabolism
2.
PLoS Comput Biol ; 17(7): e1009234, 2021 07.
Article in English | MEDLINE | ID: mdl-34297714

ABSTRACT

Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Biochemical Phenomena , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Computational Biology , Computer Simulation , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Glycolysis , HCT116 Cells , Humans , Kinetics , Linear Models , Metabolic Flux Analysis/statistics & numerical data , Metabolomics/statistics & numerical data , Proof of Concept Study , Protein Kinase Inhibitors/pharmacology , Systems Theory
3.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806075

ABSTRACT

Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Cell Hypoxia , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Lung Neoplasms/metabolism , Oxygen/chemistry , A549 Cells , Apoptosis , Humans , Lysine/chemistry , Machine Learning , Metabolic Networks and Pathways , Oxidative Phosphorylation , Proteome/metabolism , Proteomics/methods , Proto-Oncogene Proteins p21(ras)/metabolism , Reactive Oxygen Species/metabolism
4.
Cancers (Basel) ; 13(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915900

ABSTRACT

Metabolic adaptation is emerging as an important hallmark of cancer and metastasis. In the last decade, increasing evidence has shown the importance of metabolic alterations underlying the metastatic process, especially in breast cancer metastasis but also in colorectal cancer metastasis. Being the main cause of cancer-related deaths, it is of great importance to developing new therapeutic strategies that specifically target metastatic cells. In this regard, targeting metabolic pathways of metastatic cells is one of the more promising windows for new therapies of metastatic colorectal cancer, where still there are no approved inhibitors against metabolic targets. In this study, we review the recent advances in the field of metabolic adaptation of cancer metastasis, focusing our attention on colorectal cancer. In addition, we also review the current status of metabolic inhibitors for cancer treatment.

5.
Cancers (Basel) ; 13(3)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498690

ABSTRACT

With most cancer-related deaths resulting from metastasis, the development of new therapeutic approaches against metastatic colorectal cancer (mCRC) is essential to increasing patient survival. The metabolic adaptations that support mCRC remain undefined and their elucidation is crucial to identify potential therapeutic targets. Here, we employed a strategy for the rational identification of targetable metabolic vulnerabilities. This strategy involved first a thorough metabolic characterisation of same-patient-derived cell lines from primary colon adenocarcinoma (SW480), its lymph node metastasis (SW620) and a liver metastatic derivative (SW620-LiM2), and second, using a novel multi-omics integration workflow, identification of metabolic vulnerabilities specific to the metastatic cell lines. We discovered that the metastatic cell lines are selectively vulnerable to the inhibition of cystine import and folate metabolism, two key pathways in redox homeostasis. Specifically, we identified the system xCT and MTHFD1 genes as potential therapeutic targets, both individually and combined, for combating mCRC.

6.
Methods Mol Biol ; 2088: 271-298, 2020.
Article in English | MEDLINE | ID: mdl-31893378

ABSTRACT

Stable isotope-resolved metabolomics (SIRM), based on the analysis of biological samples from living cells incubated with artificial isotope enriched substrates, enables mapping the rates of biochemical reactions (metabolic fluxes). We developed software supporting a workflow of analysis of SIRM data obtained with mass spectrometry (MS). The evaluation of fluxes starting from raw MS recordings requires at least three steps of computer support: first, extraction of mass spectra of metabolites of interest, then correction of the spectra for natural isotope abundance, and finally, evaluation of fluxes by simulation of the corrected spectra using a corresponding mathematical model. A kinetic model based on ordinary differential equations (ODEs) for isotopomers of metabolites of the corresponding biochemical network supports the final part of the analysis, which provides a dynamic flux map.


Subject(s)
Carbon Isotopes/metabolism , Metabolomics/methods , Software , Workflow , Cell Line , Humans , Isotope Labeling/methods , Kinetics , Mass Spectrometry/methods
7.
Mol Syst Biol ; 13(10): 940, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28978620

ABSTRACT

Cyclin-dependent kinases (CDK) are rational cancer therapeutic targets fraught with the development of acquired resistance by tumor cells. Through metabolic and transcriptomic analyses, we show that the inhibition of CDK4/6 leads to a metabolic reprogramming associated with gene networks orchestrated by the MYC transcription factor. Upon inhibition of CDK4/6, an accumulation of MYC protein ensues which explains an increased glutamine metabolism, activation of the mTOR pathway and blunting of HIF-1α-mediated responses to hypoxia. These MYC-driven adaptations to CDK4/6 inhibition render cancer cells highly sensitive to inhibitors of MYC, glutaminase or mTOR and to hypoxia, demonstrating that metabolic adaptations to antiproliferative drugs unveil new vulnerabilities that can be exploited to overcome acquired drug tolerance and resistance by cancer cells.


Subject(s)
Gene Expression Profiling/methods , Metabolomics/methods , Neoplasms/metabolism , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyridines/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Glutamine/metabolism , HCT116 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , MCF-7 Cells , Neoplasms/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
8.
Pharmacol Res ; 102: 218-34, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26375988

ABSTRACT

Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimize its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and reactive oxygen species production were analysed in A549 cells. FOXO3a subcellular localization was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Nucleus/metabolism , Forkhead Transcription Factors/metabolism , Organoselenium Compounds/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , 3T3 Cells , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Cycle/drug effects , Cell Line , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Forkhead Box Protein O3 , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Mice , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...