Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(2): 2014-2024, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726403

ABSTRACT

Compelling evidence is presented that sub-micron picoplankton shape, internal structure and orientation in combination leads to a disproportionate enhancement of differential forward scatter compared with differential side scatter when analyzed with a flow cytometer. Theoretical evidence is provided which results in an order of magnitude amplification in the forward scatter direction, with little or no change in the side scatter: this discounts the possibility of "doublets" caused by multiple particles simultaneously present in the laser beam. Observational evidence from progressively finer filtered seawater samples shows up to three orders of magnitude enhancement in the forward scatter direction and sizes of Prochlorococcus close to that reported in the literature (0.61 ± 0.17 µm). It therefore seems likely that flow cytometrically observed "bi-modal size distributions" of Prochlorococcus are instead the manifestation of intra-population differences in shape (spherical - prolate with preferential alignment) and internal structure (homogenous - heterogenous).


Subject(s)
Flow Cytometry/instrumentation , Prochlorococcus/cytology , Scattering, Radiation , Seawater/microbiology , Synechococcus/cytology , Light
2.
Appl Opt ; 58(32): 8802-8815, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31873658

ABSTRACT

Depth-resolved flow cytometric observations have been used to determine the size distribution and refractive index (RI) of picoplankton throughout the Atlantic Ocean. Prochlorococcus frequently showed double size distribution peaks centered on ${0.75 \pm 0.25}$0.75±0.25 and ${1.75 \pm 0.25}\,\,{\rm \unicode{x00B5}{\rm m}}$1.75±0.25µm; the smallest peak diameters were ${\le}{0.65}\,\,{\rm \unicode{x00B5}{\rm m}}$≤0.65µm in the equatorial upwelling with larger cells (${\sim}{0.95}\,\,{\rm \unicode{x00B5}{\rm m}}$∼0.95µm) in the surface layers of the tropical gyres. Synechococcus was strongly monodispersed: the smallest (${\sim}{1.5}\,\,{\rm \unicode{x00B5}{\rm m}}$∼1.5µm) and largest cells (${\sim}{2.25{-}2.50}\,\,{\rm \unicode{x00B5}{\rm m}}$∼2.25-2.50µm) were encountered in the lowest and highest abundance regions, respectively. Typical RI for Prochlorococcus was found to be ${\sim}{1.06}$∼1.06, whereas for Synechococcus surface RI varied between 1.04-1.08 at high and low abundances, respectively.


Subject(s)
Prochlorococcus/growth & development , Seawater/microbiology , Synechococcus/growth & development , Atlantic Ocean , Chlorophyll/analysis , Colony Count, Microbial , Ecosystem , Flow Cytometry/methods , Optics and Photonics , Prochlorococcus/cytology , Synechococcus/cytology
3.
Appl Environ Microbiol ; 63(3): 938-44, 1997 Mar.
Article in English | MEDLINE | ID: mdl-16535558

ABSTRACT

Identification problems restrict quantitative ecological research on specific nanoflagellates. Identification by specific oligonucleotide probes permits use of flow cytometry for enumeration and measurement of size of nanoflagellates in statistically meaningful samples. Flow cytometry also permits measurement of intensity of probe binding by cells. Five fluorescent probes targeted to different regions of the small subunit rRNA of the common marine flagellate Paraphysomonas vestita all hybridized with cells of this flagellate. Cells fixed with trichloroacetic acid gave detectable signals at a probe concentration of 15 aM and specific fluorescence increased almost linearly to 1.5 fM, but at higher concentrations nonspecific binding increased sharply. Three flagellates, P. vestita, Paraphysomonas imperforata, and Pteridomonas danica, all bound a general eukaryotic probe approximately in proportion to their cell size, but the specific P. vestita probe gave 14 times more fluorescence with P. vestita than with either of the other flagellates. Cell fluorescence increased during the early growth of a batch culture and decreased toward the stationary phase; cell size changed in a comparable manner. Cell fluorescence intensity may allow inferences about growth rate, but whether fluorescence (assumed to reflect ribosome number) merely correlates with cell biomass or changes in a more complex manner remains unresolved.

4.
Cytometry ; 15(4): 283-93, 1994 Apr 01.
Article in English | MEDLINE | ID: mdl-8026219

ABSTRACT

Flow cytometry data (time of flight, horizontal and vertical forward light scatter, 90 degrees light scatter, and "red" and "orange" integral fluorescence) were collected for laboratory cultures of 40 species of marine phytoplankton, from the following taxonomic classes, the Dinophyceae, Bacillariophyceae, Prymnesiophyceae, Cryptophyceae, and other flagellates. Single-hidden-layer "back-propagation" neural networks were trained to discriminate between species by recognising patterns in their flow cytometric signatures, and network performance was assessed using an independent test data set. Two approaches were adopted employing: (1) a hierarchy of small networks, the first identifying to which major taxonomic group a cell belonged, and then a network for that taxonomic group identified to species, and (2) a single large network. Discriminating some of the major taxonomic groups was successful but others less so. With networks for specific groups, cryptophyte species were all identified reliably (probability of correct classification always being > 0.75); in the other groups half of the species were identified reliably. With the large network, dinoflagellates, cryptomonads, and flagellates were identified almost as well as by networks specific for these groups. The application of neural computing techniques to identification of such a large number of species represents a significant advance from earlier studies, although further development is required.


Subject(s)
Flow Cytometry , Marine Biology/methods , Neural Networks, Computer , Phytoplankton/classification , North Sea , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...