Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Transl Res ; 247: 39-57, 2022 09.
Article in English | MEDLINE | ID: mdl-35452875

ABSTRACT

Fungal infection threatens human health worldwide due to the limited arsenal of antifungals and the rapid emergence of resistance. Epidermal growth factor receptor (EGFR) is demonstrated to mediate epithelial cell endocytosis of the leading human fungal pathogen, Candida albicans. However, whether EGFR inhibitors act on fungal cells remains unknown. Here, we discovered that the specific EGFR inhibitor osimertinib mesylate (OSI) potentiates azole efficacy against diverse fungal pathogens and overcomes azole resistance. Mechanistic investigation revealed a conserved activity of OSI by promoting intracellular fluconazole accumulation via inhibiting Pdr5 and disrupting V-ATPase function via targeting Vma1 at serine 274, eventually leading to inactivation of the global regulator TOR. Evaluation of the in vivo efficacy and toxicity of OSI demonstrated its potential clinical application in impeding fluconazole resistance. Thus, the identification of OSI as a dual action antifungal with co-targeting activity proposes a potentially effective therapeutic strategy to treat life-threatening fungal infection and overcome antifungal resistance.


Subject(s)
Azoles , Mycoses , Antifungal Agents/pharmacology , Azoles/pharmacology , Azoles/therapeutic use , ErbB Receptors , Fluconazole/pharmacology , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology
2.
Commun Biol ; 5(1): 128, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149760

ABSTRACT

In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10-100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Xenobiotics/metabolism , Xenobiotics/pharmacology
3.
J Biol Chem ; 297(4): 101110, 2021 10.
Article in English | MEDLINE | ID: mdl-34428448

ABSTRACT

Valproate (VPA) is a widely used mood stabilizer, but its therapeutic mechanism of action is not understood. This knowledge gap hinders the development of more effective drugs with fewer side effects. Using the yeast model to elucidate the effects of VPA on cellular metabolism, we determined that the drug upregulated expression of genes normally repressed during logarithmic growth on glucose medium and increased levels of activated (phosphorylated) Snf1 kinase, the major metabolic regulator of these genes. VPA also decreased the cytosolic pH (pHc) and reduced glycolytic production of 2/3-phosphoglycerate. ATP levels and mitochondrial membrane potential were increased, and glucose-mediated extracellular acidification decreased in the presence of the drug, as indicated by a smaller glucose-induced shift in pH, suggesting that the major P-type proton pump Pma1 was inhibited. Interestingly, decreasing the pHc by omeprazole-mediated inhibition of Pma1 led to Snf1 activation. We propose a model whereby VPA lowers the pHc causing a decrease in glycolytic flux. In response, Pma1 is inhibited and Snf1 is activated, resulting in increased expression of normally repressed metabolic genes. These findings suggest a central role for pHc in regulating the metabolic program of yeast cells.


Subject(s)
Cytosol/enzymology , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/enzymology , Valproic Acid/pharmacology , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Enzyme Activation/drug effects , Enzyme Activation/genetics , Glycolysis/drug effects , Glycolysis/genetics , Hydrogen-Ion Concentration , Protein Serine-Threonine Kinases/genetics , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
J Biol Chem ; 296: 100703, 2021.
Article in English | MEDLINE | ID: mdl-33895134

ABSTRACT

The vacuolar H+-ATPase (V-ATPase) is a highly conserved proton pump responsible for the acidification of intracellular organelles in virtually all eukaryotic cells. V-ATPases are regulated by the rapid and reversible disassembly of the peripheral V1 domain from the integral membrane Vo domain, accompanied by release of the V1 C subunit from both domains. Efficient reassembly of V-ATPases requires the Regulator of the H+-ATPase of Vacuoles and Endosomes (RAVE) complex in yeast. Although a number of pairwise interactions between RAVE and V-ATPase subunits have been mapped, the low endogenous levels of the RAVE complex and lethality of constitutive RAV1 overexpression have hindered biochemical characterization of the intact RAVE complex. We describe a novel inducible overexpression system that allows purification of native RAVE and RAVE-V1 complexes. Both purified RAVE and RAVE-V1 contain substoichiometric levels of subunit C. RAVE-V1 binds tightly to expressed subunit C in vitro, but binding of subunit C to RAVE alone is weak. Neither RAVE nor RAVE-V1 interacts with the N-terminal domain of Vo subunit Vph1 in vitro. RAVE-V1 complexes, like isolated V1, have no MgATPase activity, suggesting that RAVE cannot reverse V1 inhibition generated by rotation of subunit H and entrapment of MgADP that occur upon disassembly. However, purified RAVE can accelerate reassembly of V1 carrying a mutant subunit H incapable of inhibition with Vo complexes reconstituted into lipid nanodiscs, consistent with its catalytic activity in vivo. These results provide new insights into the possible order of events in V-ATPase reassembly and the roles of the RAVE complex in each event.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Vacuolar Proton-Translocating ATPases/genetics
5.
Kidney Int ; 97(3): 567-579, 2020 03.
Article in English | MEDLINE | ID: mdl-31959358

ABSTRACT

Distal renal tubular acidosis is a rare renal tubular disorder characterized by hyperchloremic metabolic acidosis and impaired urinary acidification. Mutations in three genes (ATP6V0A4, ATP6V1B1 and SLC4A1) constitute a monogenic causation in 58-70% of familial cases of distal renal tubular acidosis. Recently, mutations in FOXI1 have been identified as an additional cause. Therefore, we hypothesized that further monogenic causes of distal renal tubular acidosis remain to be discovered. Panel sequencing and/or whole exome sequencing was performed in a cohort of 17 families with 19 affected individuals with pediatric onset distal renal tubular acidosis. A causative mutation was detected in one of the three "classical" known distal renal tubular acidosis genes in 10 of 17 families. The seven unsolved families were then subjected to candidate whole exome sequencing analysis. Potential disease causing mutations in three genes were detected: ATP6V1C2, which encodes another kidney specific subunit of the V-type proton ATPase (1 family); WDR72 (2 families), previously implicated in V-ATPase trafficking in cells; and SLC4A2 (1 family), a paralog of the known distal renal tubular acidosis gene SLC4A1. Two of these mutations were assessed for deleteriousness through functional studies. Yeast growth assays for ATP6V1C2 revealed loss-of-function for the patient mutation, strongly supporting ATP6V1C2 as a novel distal renal tubular acidosis gene. Thus, we provided a molecular diagnosis in a known distal renal tubular acidosis gene in 10 of 17 families (59%) with this disease, identified mutations in ATP6V1C2 as a novel human candidate gene, and provided further evidence for phenotypic expansion in WDR72 mutations from amelogenesis imperfecta to distal renal tubular acidosis.


Subject(s)
Acidosis, Renal Tubular , Vacuolar Proton-Translocating ATPases , Acidosis, Renal Tubular/genetics , Anion Exchange Protein 1, Erythrocyte , Child , Chloride-Bicarbonate Antiporters , DNA Mutational Analysis , Forkhead Transcription Factors , Humans , Mutation , Vacuolar Proton-Translocating ATPases/genetics , Exome Sequencing
6.
J Biol Chem ; 294(23): 9161-9171, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31023825

ABSTRACT

The low-level endo-lysosomal signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), is required for full assembly and activity of vacuolar H+-ATPases (V-ATPases) containing the vacuolar a-subunit isoform Vph1 in yeast. The cytosolic N-terminal domain of Vph1 is also recruited to membranes in vivo in a PI(3,5)P2-dependent manner, but it is not known if its interaction with PI(3,5)P2 is direct. Here, using biochemical characterization of isolated yeast vacuolar vesicles, we demonstrate that addition of exogenous short-chain PI(3,5)P2 to Vph1-containing vacuolar vesicles activates V-ATPase activity and proton pumping. Modeling of the cytosolic N-terminal domain of Vph1 identified two membrane-oriented sequences that contain clustered basic amino acids. Substitutions in one of these sequences (231KTREYKHK) abolished the PI(3,5)P2-dependent activation of V-ATPase without affecting basal V-ATPase activity. We also observed that vph1 mutants lacking PI(3,5)P2 activation have enlarged vacuoles relative to those in WT cells. These mutants exhibit a significant synthetic growth defect when combined with deletion of Hog1, a kinase important for signaling the transcriptional response to osmotic stress. The results suggest that PI(3,5)P2 interacts directly with Vph1, and that this interaction both activates V-ATPase activity and protects cells from stress.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Amino Acid Sequence , Mutagenesis , Osmotic Pressure , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/genetics , Vacuoles/chemistry , Vacuoles/metabolism
7.
J Biol Chem ; 290(46): 27460-72, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26324718

ABSTRACT

Depletion of inositol has profound effects on cell function and has been implicated in the therapeutic effects of drugs used to treat epilepsy and bipolar disorder. We have previously shown that the anticonvulsant drug valproate (VPA) depletes inositol by inhibiting myo-inositol-3-phosphate synthase, the enzyme that catalyzes the first and rate-limiting step of inositol biosynthesis. To elucidate the cellular consequences of inositol depletion, we screened the yeast deletion collection for VPA-sensitive mutants and identified mutants in vacuolar sorting and the vacuolar ATPase (V-ATPase). Inositol depletion caused by starvation of ino1Δ cells perturbed the vacuolar structure and decreased V-ATPase activity and proton pumping in isolated vacuolar vesicles. VPA compromised the dynamics of phosphatidylinositol 3,5-bisphosphate (PI3,5P2) and greatly reduced V-ATPase proton transport in inositol-deprived wild-type cells. Osmotic stress, known to increase PI3,5P2 levels, did not restore PI3,5P2 homeostasis nor did it induce vacuolar fragmentation in VPA-treated cells, suggesting that perturbation of the V-ATPase is a consequence of altered PI3,5P2 homeostasis under inositol-limiting conditions. This study is the first to demonstrate that inositol depletion caused by starvation of an inositol synthesis mutant or by the inositol-depleting drug VPA leads to perturbation of the V-ATPase.


Subject(s)
Anticonvulsants/pharmacology , Inositol/deficiency , Intramolecular Lyases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/enzymology , Valproic Acid/pharmacology , Drug Resistance, Fungal/genetics , Gene Deletion , Homeostasis , Inositol/genetics , Myo-Inositol-1-Phosphate Synthase/genetics , Osmotic Pressure , Phosphatidylinositol Phosphates/metabolism , Protein Transport , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Vacuolar Proton-Translocating ATPases/genetics
8.
J Biol Chem ; 290(46): 27511-23, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26405040

ABSTRACT

The RAVE complex (regulator of the H(+)-ATPase of vacuolar and endosomal membranes) is required for biosynthetic assembly and glucose-stimulated reassembly of the yeast vacuolar H(+)-ATPase (V-ATPase). Yeast RAVE contains three subunits: Rav1, Rav2, and Skp1. Rav1 is the largest subunit, and it binds Rav2 and Skp1 of RAVE; the E, G, and C subunits of the V-ATPase peripheral V1 sector; and Vph1 of the membrane Vo sector. We identified Rav1 regions required for interaction with its binding partners through deletion analysis, co-immunoprecipitation, two-hybrid assay, and pulldown assays with expressed proteins. We find that Skp1 binding requires sequences near the C terminus of Rav1, V1 subunits E and C bind to a conserved region in the C-terminal half of Rav1, and the cytosolic domain of Vph1 binds near the junction of the Rav1 N- and C-terminal halves. In contrast, Rav2 binds to the N-terminal domain of Rav1, which can be modeled as a double ß-propeller. Only the V1 C subunit binds to both Rav1 and Rav2. Using GFP-tagged RAVE subunits in vivo, we demonstrate glucose-dependent association of RAVE with the vacuolar membrane, consistent with its role in glucose-dependent V-ATPase assembly. It is known that V1 subunit C localizes to the V1-Vo interface in assembled V-ATPase complexes and is important in regulated disassembly of V-ATPases. We propose that RAVE cycles between cytosol and vacuolar membrane in a glucose-dependent manner, positioning V1 and V0 subcomplexes and orienting the V1 C subunit to promote assembly.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Binding Sites , Endosomal Sorting Complexes Required for Transport/chemistry , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/chemistry , Two-Hybrid System Techniques , Vacuolar Proton-Translocating ATPases/chemistry
9.
Mol Biol Cell ; 25(8): 1251-62, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24523285

ABSTRACT

Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane V(o) domain. Multiple stresses induce changes in V1-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). V-ATPase activation through V1-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P2 synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P2 on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P2 levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V1-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P2-containing membranes stabilizes V1-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1 and vac14 mutants and suggest that human disease phenotypes associated with PI(3,5)P2 loss may arise from compromised V-ATPase stability and regulation.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Saccharomyces cerevisiae/metabolism , Vacuolar Proton-Translocating ATPases/biosynthesis , Membrane Proteins/genetics , Osmotic Pressure , Phosphatidylinositol Phosphates/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Sodium Chloride/metabolism
10.
Mol Biol Cell ; 25(3): 356-67, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24307682

ABSTRACT

The regulator of ATPase of vacuoles and endosomes (RAVE) complex is implicated in vacuolar H(+)-translocating ATPase (V-ATPase) assembly and activity. In yeast, rav1 mutants exhibit a Vma(-) growth phenotype characteristic of loss of V-ATPase activity only at high temperature. Synthetic genetic analysis identified mutations that exhibit a full, temperature-independent Vma(-) growth defect when combined with the rav1 mutation. These include class E vps mutations, which compromise endosomal sorting. The synthetic Vma(-) growth defect could not be attributed to loss of vacuolar acidification in the double mutants, as there was no vacuolar acidification in the rav1 mutant. The yeast V-ATPase a subunit is present as two isoforms, Stv1p in Golgi and endosomes and Vph1p in vacuoles. Rav1p interacts directly with the N-terminal domain of Vph1p. STV1 overexpression suppressed the growth defects of both rav1 and rav1vph1, and allowed RAVE-independent assembly of active Stv1p-containing V-ATPases in vacuoles. Mutations causing synthetic genetic defects in combination with rav1 perturbed the normal localization of Stv1-green fluorescent protein. We propose that RAVE is necessary for assembly of Vph1-containing V-ATPase complexes but not Stv1-containing complexes. Synthetic Vma(-) phenotypes arise from defects in Vph1p-containing complexes caused by rav1, combined with defects in Stv1p-containing V-ATPases caused by the second mutation. Thus RAVE is the first isoform-specific V-ATPase assembly factor.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Adaptor Proteins, Signal Transducing/biosynthesis , Endosomes/metabolism , Golgi Apparatus/metabolism , Mutation , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Vacuolar Proton-Translocating ATPases/biosynthesis , Vacuoles/metabolism
11.
J Vis Exp ; (74)2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23629151

ABSTRACT

Vacuolar and cytosolic pH are highly regulated in yeast cells and occupy a central role in overall pH homeostasis. We describe protocols for ratiometric measurement of pH in vivo using pH-sensitive fluorophores localized to the vacuole or cytosol. Vacuolar pH is measured using BCECF, which localizes to the vacuole in yeast when introduced into cells in its acetoxymethyl ester form. Cytosolic pH is measured with a pH-sensitive GFP expressed under control of a yeast promoter, yeast pHluorin. Methods for measurement of fluorescence ratios in yeast cell suspensions in a fluorimeter are described. Through these protocols, single time point measurements of pH under different conditions or in different yeast mutants have been compared and changes in pH over time have been monitored. These methods have also been adapted to a fluorescence plate reader format for high-throughput experiments. Advantages of ratiometric pH measurements over other approaches currently in use, potential experimental problems and solutions, and prospects for future use of these techniques are also described.


Subject(s)
Cytosol/chemistry , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Fluorometry/methods , Saccharomyces cerevisiae/chemistry , Vacuoles/chemistry , Cytosol/metabolism , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Vacuoles/metabolism
12.
J Biol Chem ; 286(32): 28089-96, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21669878

ABSTRACT

In yeast cells, subunit a of the vacuolar proton pump (V-ATPase) is encoded by two organelle-specific isoforms, VPH1 and STV1. V-ATPases containing Vph1 and Stv1 localize predominantly to the vacuole and the Golgi apparatus/endosomes, respectively. Ratiometric measurements of vacuolar pH confirm that loss of STV1 has little effect on vacuolar pH. Loss of VPH1 results in vacuolar alkalinization that is even more rapid and pronounced than in vma mutants, which lack all V-ATPase activity. Cytosolic pH responses to glucose addition in the vph1Δ mutant are similar to those in vma mutants. The extended cytosolic acidification in these mutants arises from reduced activity of the plasma membrane proton pump, Pma1p. Pma1p is mislocalized in vma mutants but remains at the plasma membrane in both vph1Δ and stv1Δ mutants, suggesting multiple mechanisms for limiting Pma1 activity when organelle acidification is compromised. pH measurements in early prevacuolar compartments via a pHluorin fusion to the Golgi protein Gef1 demonstrate that pH responses of these compartments parallel cytosolic pH changes. Surprisingly, these compartments remain acidic even in the absence of V-ATPase function, possibly as a result of cytosolic acidification. These results emphasize that loss of a single subunit isoform may have effects far beyond the organelle where it resides.


Subject(s)
Catalytic Domain/physiology , Saccharomyces cerevisiae/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/enzymology , Chloride Channels/genetics , Chloride Channels/metabolism , Cytosol/enzymology , Glucose/pharmacology , Golgi Apparatus/enzymology , Golgi Apparatus/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sweetening Agents/pharmacology , Vacuolar Proton-Translocating ATPases/genetics , Vacuoles/genetics
13.
Mol Biol Cell ; 19(12): 5047-58, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18799619

ABSTRACT

Cardiolipin (CL) is an anionic phospholipid with a dimeric structure predominantly localized in the mitochondrial inner membrane, where it is closely associated with mitochondrial function, biogenesis, and genome stability (Daum, 1985; Janitor and Subik, 1993; Jiang et al., 2000; Schlame et al., 2000; Zhong et al., 2004). Previous studies have shown that yeast mutant cells lacking CL due to a disruption in CRD1, the structural gene encoding CL synthase, exhibit defective colony formation at elevated temperature even on glucose medium (Jiang et al., 1999; Zhong et al., 2004), suggesting a role for CL in cellular processes apart from mitochondrial bioenergetics. In the current study, we present evidence that the crd1Delta mutant exhibits severe vacuolar defects, including swollen vacuole morphology and loss of vacuolar acidification, at 37 degrees C. Moreover, vacuoles from crd1Delta show decreased vacuolar H(+)-ATPase activity and proton pumping, which may contribute to loss of vacuolar acidification. Deletion mutants in RTG2 and NHX1, which mediate vacuolar pH and ion homeostasis, rescue the defective colony formation phenotype of crd1Delta, strongly suggesting that the temperature sensitivity of crd1Delta is a consequence of the vacuolar defects. Our results demonstrate the existence of a novel mitochondria-vacuole signaling pathway mediated by CL synthesis.


Subject(s)
Cardiolipins/metabolism , Mitochondria/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Signal Transduction/physiology , Vacuoles/metabolism , Cardiolipins/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Shape , Homeostasis , Humans , Intracellular Signaling Peptides and Proteins , Mitochondria/ultrastructure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Temperature , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/ultrastructure
14.
J Biol Chem ; 282(11): 8521-32, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17234635

ABSTRACT

The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.


Subject(s)
Cytosol/enzymology , Diploidy , Heterozygote , Mutation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/genetics , Adenosine Triphosphatases/metabolism , Ca(2+) Mg(2+)-ATPase/metabolism , Cytosol/metabolism , Gene Deletion , Gene Silencing , Genotype , Hydrolysis , Macrolides/pharmacology , Models, Biological , Plasmids/metabolism , Saccharomyces cerevisiae Proteins/physiology , Vacuolar Proton-Translocating ATPases/physiology
15.
J Biol Chem ; 281(32): 22752-60, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-16774922

ABSTRACT

The E and G subunits of the yeast V-ATPase are believed to be part of the peripheral or stator stalk(s) responsible for physically and functionally linking the peripheral V1 sector, responsible for ATP hydrolysis, to the membrane V0 sector, containing the proton pore. The E and G subunits interact tightly and specifically, both on a far Western blot of yeast vacuolar proteins and in the yeast two-hybrid assay. Amino acids 13-79 of the E subunit are critical for the E-G two-hybrid interaction. Different tagged versions of the G subunit were expressed in a diploid cell, and affinity purification of cytosolic V1 sectors via a FLAG-tagged G subunit resulted in copurification of a Myc-tagged G subunit, implying more than one G subunit was present in each V1 complex. Similarly, hemagglutinin-tagged E subunit was able to affinity-purify V1 sectors containing an untagged version of the E subunit from heterozygous diploid cells, suggesting that more than one E subunit is present. Overexpression of the subunit G results in a destabilization of subunit E similar to that seen in the complete absence of subunit G (Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H., and Klionsky, D. J. (1997) J. Biol. Chem. 272, 26787-26793). These results are consistent with recent models showing at least two peripheral stalks connecting the V1 and V0 sectors of the V-ATPase and would allow both stalks to be based on an EG dimer.


Subject(s)
Vacuolar Proton-Translocating ATPases/chemistry , Cytosol/metabolism , Epitopes/chemistry , Fungal Proteins/chemistry , Gene Deletion , Mutation , Neurospora crassa/metabolism , Plasmids/metabolism , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Structure-Activity Relationship , Two-Hybrid System Techniques
16.
J Biol Chem ; 280(44): 36978-85, 2005 Nov 04.
Article in English | MEDLINE | ID: mdl-16141210

ABSTRACT

The H subunit of the yeast V-ATPase is an extended structure with two relatively independent domains, an N-terminal domain consisting of amino acids 1-348 and a C-terminal domain consisting of amino acids 352-478. We have expressed these two domains independently and together in a yeast strain lacking the H subunit (vma13Delta mutant). The N-terminal domain partially complements the growth defects of the mutant and supports approximately 25% of the wild-type Mg(2+)-dependent ATPase activity in isolated vacuolar vesicles, but surprisingly, this activity is both largely concanamycin-insensitive and uncoupled from proton transport. The C-terminal domain does not complement the growth defects, and supports no ATP hydrolysis or proton transport, even though it is recruited to the vacuolar membrane. Expression of both domains in a vma13Delta strain gives better complementation than either fragment alone and results in higher concanamycin-sensitive ATPase activity and ATP-driven proton pumping than the N-terminal domain alone. Thus, the two domains make complementary contributions to structural and functional coupling of the peripheral V(1) and membrane V(o) sectors of the V-ATPase, but this coupling does not require that they be joined covalently. The N-terminal domain alone is sufficient for activation of ATP hydrolysis in V(1), but the C-terminal domain is essential for proper communication between the V(1) and V(o) sectors.


Subject(s)
Saccharomyces cerevisiae/enzymology , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/metabolism , Enzyme Inhibitors/pharmacology , Ion Transport , Macrolides/pharmacology , Protein Conformation , Protein Structure, Tertiary , Proton Pumps , Protons , Vacuolar Proton-Translocating ATPases/genetics , Vacuoles/metabolism
17.
J Biol Chem ; 277(16): 13831-9, 2002 Apr 19.
Article in English | MEDLINE | ID: mdl-11844802

ABSTRACT

Vacuolar proton-translocating ATPases are composed of a peripheral complex, V(1), attached to an integral membrane complex, V(o). Association of the two complexes is essential for ATP-driven proton transport and is regulated post-translationally in response to glucose concentration. A new complex, RAVE, was recently isolated and implicated in glucose-dependent reassembly of V-ATPase complexes that had disassembled in response to glucose deprivation (Seol, J. H., Shevchenko, A., and Deshaies, R. J. (2001) Nat. Cell Biol. 3, 384-391). Here, we provide evidence supporting a role for RAVE in reassembly of the V-ATPase but also demonstrate an essential role in V-ATPase assembly under other conditions. The RAVE complex associates reversibly with V(1) complexes released from the membrane by glucose deprivation but binds constitutively to cytosolic V(1) sectors in a mutant lacking V(o) sectors. V-ATPase complexes from cells lacking RAVE subunits show serious structural and functional defects even in glucose-grown cells or in combination with a mutation that blocks disassembly of the V-ATPase. RAVE small middle dotV(1) interactions are specifically disrupted in cells lacking V(1) subunits E or G, suggesting a direct involvement for these subunits in interaction of the two complexes. Skp1p, a RAVE subunit involved in many different signal transduction pathways, binds stably to other RAVE subunits under conditions that alter RAVE small middle dotV(1) binding; thus, Skp1p recruitment to the RAVE complex does not appear to provide a signal for V-ATPase assembly.


Subject(s)
Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Cell Cycle Proteins/metabolism , Cell Membrane/metabolism , Fungal Proteins/metabolism , Genotype , Glucose/metabolism , Models, Biological , Mutation , Precipitin Tests , Protein Binding , S-Phase Kinase-Associated Proteins , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...