Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 302: 120431, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36604092

ABSTRACT

Chitosan based nanofibers are emerging biomaterials with a plethora of applications, especially in medicine and healthcare. Herein, binary quaternized chitosan/chitosan fibers are reported for the first time. Their preparation strategy consisted in the electrospinning of ternary chitosan/quaternized chitosan/poly(ethylene oxide) solutions followed by the selective removal of poly(ethylene oxide). Their morphology and performances were systematically investigated and discussed in detail. It was found that the fibers had reversible water vapor adsorption/desorption and showed swelling degrees similar to commercial wound dressings. They presented good mechanical properties and the content of quaternized chitosan modulated their bioadhesion, mucoadhesion and biodegradation rate and conferred them strong antimicrobial activity. Tests on normal human fibroblasts confirmed their safely use in contact with tissues and the biocompatibility investigation on rats showed no harmful effect when subcutaneous implanted. All these proved the binary quaternized chitosan/chitosan fibers as bioactive materials suitable for tissue regeneration, wound healing and drug delivery systems.


Subject(s)
Chitosan , Nanofibers , Humans , Rats , Animals , Tissue Engineering , Regenerative Medicine , Ethylene Oxide , Anti-Bacterial Agents/pharmacology
2.
Exp Ther Med ; 20(3): 2361-2367, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32765715

ABSTRACT

Burns have become an important public health problem in the last two decades, with just over a quarter of a million deaths annually. Major burns are accompanied by a strong inflammatory response, which will most often lead to systemic response inflammatory syndrome, followed by sepsis and finally induce multiple organ failure. The main mechanism involved in wound healing after burns is the inflammatory process, characterized by the recruitment of myeloid and T cells and by the involvement of numerous cytokines, chemokines, complement fractions, as well as various growth factors. Inflammasomes, protein-based cytosolic complexes, activated during metabolic stress or infection, play a role in modulating and improving the defense capacity of the innate immune system. Nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has been studied predominantly and several hypotheses have been issued. Restoring the balance between the pro-inflammatory response and the anti-inflammatory activity is the key element to effective therapy in burns. Severe burns require nutritional support and pharmacotherapy not only for burn area but for different pathological complications of burn injury. In-depth research is required to find new ways to modulate the defense capacity, to prevent the complications of abnormal immune response and to treat burn injuries efficiently.

SELECTION OF CITATIONS
SEARCH DETAIL
...