Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Viruses ; 15(12)2023 12 17.
Article in English | MEDLINE | ID: mdl-38140691

ABSTRACT

Salmonid alphavirus strain 3 is responsible for outbreaks of pancreas disease in salmon and rainbow trout in Norway. Although the extensive amount of research on SAV3 focused mainly on the heart and pancreas (of clinical importance), tropism and pathogenesis studies of the virus in other salmon tissues are limited. Here, we used a combination of RT-qPCR (Q_nsp1 gene) and in situ hybridization (RNAscope®) to demonstrate the tropism of SAV3 in situ in tissues of Atlantic salmon, employing a challenge model (by cohabitation). In addition, as previous results suggested that the pseudobranch may harbor the virus, the change in the expression of different immune genes upon SAV3 infection (RT-qPCR) was focused on the pseudobranch in this study. In situ hybridization detected SAV3 in different tissues of Atlantic salmon during the acute phase of the infection, with the heart ventricle showing the most extensive infection. Furthermore, the detection of the virus in different adipose tissues associated with the internal organs of the salmon suggests a specific affinity of SAV3 to adipocyte components. The inconsistent immune response to SAV3 in the pseudobranch after infection did not mitigate the infection in that tissue and is probably responsible for the persistent low infection at 4 weeks post-challenge. The early detection of SAV3 in the pseudobranch after infection, along with the persistent low infection over the experimental infection course, suggests a pivotal role of the pseudobranch in SAV3 pathogenesis in Atlantic salmon.


Subject(s)
Alphavirus Infections , Alphavirus , Fish Diseases , Salmo salar , Animals , Alphavirus/genetics , Heart
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762632

ABSTRACT

The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage. While the mucus layers of various bony fish species have been investigated, the composition and glycan profiles of shark skin mucus remain relatively unexplored. In this pilot study, we aimed to explore the structure and composition of shark skin mucus through histological analysis and glycan profiling. Histological examination of skin samples from Atlantic spiny dogfish (Squalus acanthias) sharks and chain catsharks (Scyliorhinus retifer) revealed distinct mucin-producing cells and a mucus layer, indicating the presence of a functional mucus layer similar to bony fish mucus albeit thinner. Glycan profiling using liquid chromatography-electrospray ionization tandem mass spectrometry unveiled a diverse repertoire of mostly O-glycans in the mucus of the two sharks as well as little skate (Leucoraja erinacea). Elasmobranch glycans differ significantly from bony fish, especially in being more sulfated, and some bear resemblance to human glycans, such as gastric mucin O-glycans and H blood group-type glycans. This study contributes to the concept of shark skin having unique properties and provides a foundation for further research into the functional roles and potential biomedical implications of shark skin mucus glycans.

3.
Viruses ; 14(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36560705

ABSTRACT

The Salmon gill poxvirus (SGPV) has emerged in recent years as the cause of an acute respiratory disease that can lead to high mortality in farmed Atlantic salmon presmolts, known as Salmon gill poxvirus disease. SGPV was first identified in Norway in the 1990s, and its large DNA genome, consisting of over 206 predicted protein-coding genes, was characterized in 2015. This review summarizes current knowledge relating to disease manifestation and its effects on the host immune system and describes dissemination of the virus. It also demonstrates how newly established molecular tools can help us to understand SGPV and its pathogenesis. Finally, we conclude and ask some burning questions that should be addressed in future research.


Subject(s)
Chordopoxvirinae , Fish Diseases , Poxviridae , Salmo salar , Animals , Gills , Poxviridae/genetics
4.
J Fish Dis ; 45(9): 1267-1279, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35686455

ABSTRACT

Since the first description of cardiomyopathy syndrome (CMS) in Atlantic salmon, in 1985, the disease caused by piscine myocarditisvirus (PMCV) has become a common problem in Atlantic salmon farming, not only in Norway, but also in other salmon farming countries like Scotland and Ireland. In the last years, CMS has been ranked as the most important salmon viral disease in Norway regarding both mortality and economic losses. Detailed knowledge of infection and pathogenesis is still lacking, a decade after the causal agent was first described, and there is a need for a wider range of methods/tools for diagnostic and research purposes. In this study, we compared the detection of PMCV- and CMS-related tissue lesions using previously used and well-known methods like histopathology and real-time RT-PCR to immunohistochemistry (IHC), a less used method, and a new method, RNAscope in situ hybridization. Tissue samples of three different cardiac compartments, mid-kidney and skin/muscle tissue were compared with non-lethal parallel samplings of blood and mucus. The development of pathological cardiac lesions observed in this experiment was in accordance with previous descriptions of CMS. Our results indicate a viremic phase 10- to 20-day post-challenge (dpc) preceding the cardiac lesions. In this early phase, virus could also be detected in relatively high amount in mid-kidney by real-time RT-PCR. Plasma and/or mid-kidney samples may, therefore, be candidates to screen for early-phase PMCV infection. The RNAscope in situ hybridization method showed higher sensitivity and robustness compared with the immunohistochemistry and may be a valuable support to histopathology in CMS diagnostics, especially in cases of untypical lesions or mixed infections.


Subject(s)
Cardiomyopathies , Fish Diseases , Salmo salar , Totiviridae , Animals , Cardiomyopathies/diagnosis , Cardiomyopathies/veterinary , Fish Diseases/diagnosis , Heart , Totiviridae/genetics
5.
Antioxidants (Basel) ; 11(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35624801

ABSTRACT

The impact of dietary curcumin (CUR) on the growth, antioxidant activity, histomorphology of certain organs, proinflammatory cytokine production, and immune status of Oreochromis niloticus was evaluated. The fingerlings (n = 225, 41.60 ± 0.09 g/fish) were randomly allotted into five experimental groups in triplicate. Fish were fed basal diets complemented with 0, 200, 400, 600, or 800 mg curcumin/kg diet (CUR0, CUR200, CUR400, CUR600, and CUR800, respectively) for 10 weeks. An increase in fish growth was reported in the CUR200 and CUR400 groups. The feed conversion ratio was enhanced by 15% in the CUR400 group. Fish body protein content was increased in the CUR600 group (p ≤ 0.01). Body fat was decreased, and ash content was increased by CUR supplementation in a level-related way (p < 0.05). The villus height was increased in the CUR400 and CUR600 groups. The villus width was increased by CUR supplementation, with the best result found in the CUR600 group. The liver of CUR-fed fish displayed comparatively normal hepatocytes. TNF-α and caspase-3 were significantly upregulated by dietary CUR in a level-related way. The serum catalase activity and GSH level were increased in CUR200 and CUR400 groups. Curcumin supplementation boosted the serum SOD activity and reduced the MDA level. IL10 and IgM levels were increased in the CUR200 and CUR400 groups. Lysozyme activity was increased in the CUR200−400 groups. Serum complement 3 level was increased in the CUR400 group. The percentage survival of O. niloticus challenged with Aeromonas hydrophila was highest in the CUR200-CUR600 groups (100%) and decreased in the CUR800 group (80%). This study concluded that CUR could be added to Nile tilapia diets up to 400 mg·kg−1 to achieve better growth, antioxidant capacity, immune response, and intestinal histology. Long feeding periods on high levels of CUR (600 and 800 mg·kg−1) stimulate inflammatory reactions in fish tissues.

6.
Front Immunol ; 12: 689302, 2021.
Article in English | MEDLINE | ID: mdl-34177946

ABSTRACT

Salmon Gill Poxvirus Disease (SGPVD) has emerged as a cause of acute mortality in Atlantic salmon (Salmo salar L.) presmolts in Norwegian aquaculture. The clinical phase of the disease is associated with apoptotic cell death in the gill epithelium causing acute respiratory distress, followed by proliferative changes in the regenerating gill in the period after the disease outbreak. In an experimental SGPV challenge trial published in 2020, acute disease was only seen in fish injected with hydrocortisone 24 h prior to infection. SGPV-mediated mortality in the hydrocortisone-injected group was associated with more extensive gill pathology and higher SGPV levels compared to the group infected with SGPV only. In this study based on the same trial, SGPV gene expression and the innate and adaptive antiviral immune response was monitored in gills and spleen in the presence and absence of hydrocortisone. Whereas most SGPV genes were induced from day 3 along with the interferon-regulated innate immune response in gills, the putative SGPV virulence genes of the B22R family were expressed already one day after SGPV exposure, indicating a potential role as early markers of SGPV infection. In gills of the hydrocortisone-injected fish infected with SGPV, MX expression was delayed until day 10, and then expression skyrocketed along with the viral peak, gill pathology and mortality occurring from day 14. A similar expression pattern was observed for Interferon gamma (IFNγ) and granzyme A (GzmA) in the gills, indicating a role of acute cytotoxic cell activity in SGPVD. Duplex in situ hybridization demonstrated effects of hydrocortisone on the number and localization of GzmA-containing cells, and colocalization with SGPV infected cells in the gill. SGPV was generally not detected in spleen, and gill infection did not induce any corresponding systemic immune activity in the absence of stress hormone injection. However, in fish injected with hydrocortisone, IFNγ and GzmA gene expression was induced in spleen in the days prior to acute mortality. These data indicate that suppressed mucosal immune response in the gills and the late triggered systemic immune response in the spleen following hormonal stress induction may be the key to the onset of clinical SGPVD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fish Diseases/immunology , Hydrocortisone/pharmacology , Immunity, Mucosal/drug effects , Poxviridae Infections/immunology , Salmo salar/immunology , Animals , CD4 Antigens/genetics , CD4 Antigens/immunology , CD8 Antigens/genetics , CD8 Antigens/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Gills/immunology , Gills/virology , Granzymes/genetics , Granzymes/immunology , Host-Pathogen Interactions , Interferon-gamma/genetics , Interferon-gamma/immunology , Mucous Membrane/immunology , Poxviridae/genetics , Salmo salar/genetics , Salmo salar/virology
7.
PLoS One ; 16(6): e0253297, 2021.
Article in English | MEDLINE | ID: mdl-34133472

ABSTRACT

Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate different membrane filters and buffers for concentration and recovery of ISAV in seawater, prior to molecular detection. One litre each of artificial and natural seawater was spiked with ISAV, followed by concentration with different filters and subsequent elution with different buffers. The negatively charged MF hydrophilic membrane filter, combined with NucliSENS® lysis buffer, presented the highest ISAV recovery percentages with 12.5 ± 1.3% by RT-qPCR and 31.7 ± 10.7% by RT-ddPCR. For the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter, combined with NucliSENS® lysis buffer, the ISAV recovery percentages were 3.4 ± 0.1% by RT-qPCR and 10.8 ± 14.2% by RT-ddPCR. The limits of quantification (LOQ) were estimated to be 2.2 x 103 ISAV copies/L of natural seawater for both RT-qPCR and RT-ddPCR. The ISAV concentration method was more efficient in natural seawater.


Subject(s)
Filtration/methods , Fish Diseases/virology , Isavirus , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Seawater/virology , Animals , Buffers , Filtration/instrumentation , Fish Diseases/prevention & control , Membranes, Artificial , Orthomyxoviridae Infections/prevention & control , Reverse Transcriptase Polymerase Chain Reaction , Salmo salar/virology
8.
Vaccines (Basel) ; 10(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35062677

ABSTRACT

Vaccination against salmon lice (Lepeophtheirus salmonis) is a means of control that averts the negative effects of chemical approaches. Here, we studied the immunogenicity and protective effect of a vaccine formulation (based on a salmon lice-gut recombinant protein [P33]) against Lepeophtheirus salmonis infestation in Atlantic salmon in a laboratory-based trial. Our findings revealed that P33 vaccine can provide a measure of protection against immature and adult salmon lice infestation. This protection seemed to be vaccine dose-dependent, where higher doses resulted in lower parasitic infestation rates. We also provide immunological evidence confirming that P33-specific immune response can be triggered in Atlantic salmon after P33 vaccination, and that production of P33-specific antibodies in blood can be detected in vaccinated fish. The negative correlation between P33-specific IgM in salmon plasma and salmon lice numbers on vaccinated fish suggests that protection against lice can be mediated by the specific antibody in salmon plasma. The success of P33 vaccination in protecting salmon against lice confirms the possibility of employing the hematophagous nature of the parasite to deliver salmon-specific antibodies against lice-gut proteins.

9.
Metabolites ; 12(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35050150

ABSTRACT

Mucous membranes such as the gill and skin mucosa in fish protect them against a multitude of environmental factors. At the same time, changes in the molecular composition of mucus may provide valuable information about the interaction of the fish with their environment, as well as their health and welfare. In this study, the metabolite profiles of the plasma, skin and gill mucus of freshwater Atlantic salmon (Salmo salar) were compared using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Several normalization procedures aimed to reduce unwanted variation in the untargeted data were tested. In addition, the basal metabolism of skin and gills, and the impact of the anesthetic benzocaine for euthanisation were studied. For targeted metabolomics, the commercial AbsoluteIDQ p400 HR kit was used to evaluate the potential differences in metabolic composition in epidermal mucus as compared to the plasma. The targeted metabolomics data showed a high level of correlation between different types of biological fluids from the same individual, indicating that mucus metabolite composition could be used for fish health monitoring and research.

10.
Animals (Basel) ; 10(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784772

ABSTRACT

Protocols used to collect fish skin mucus may inadvertently compromise the sampled fish or the resulting sample. Here, we used three methods (wiping, scraping, and absorption) to collect skin mucus from Atlantic salmon and compared their invasiveness on fish skin epithelium. We found that the absorption method was the least invasive. We also compared the abundance of antigen-specific immunoglobulin M subtype A antibodies (IgM-A Ab) and complement component 5 (C5) in mucus samples collected from vaccinated fish by the three methods. An enzyme-cascade-amplification strategy colorimetric immune assay was optimized and used to analyze IgM-A, and ELISA was used to analyze C5. The abundance of antigen-specific IgM-A in skin mucus was comparable between the three methods, but C5 was significantly lower in absorbed mucus in comparison to in the wiped or scraped mucus samples. Absorbed skin mucus samples collected from various body regions of salmon, levels of C5 were comparable, while specific IgM-A amounts varied between the regions. By comparing three mucus-absorbing materials (medical wipe, gauze, and cotton) for their ability to absorb and release IgM-A and C5, medical wipes proved to be ideal for IgM-A analysis, whereas gauze was the best for C5 analysis.

11.
Vet Res ; 51(1): 63, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32381047

ABSTRACT

Salmon gill poxvirus (SGPV) infection is a common denominator in many cases of complex gill disease in the Norwegian salmon farming industry and may, as a single agent infection, result in salmon poxvirus disease (SGPVD). Experiences from the field suggest that stress may be a decisive factor for the induction of SGPVD. Here we investigated the effect of stress hormone treatment on SGPV kinetics and disease development. In our experiment, Atlantic salmon were divided into four groups. Two groups of fish received an intraperitoneal injection of hydrocortisone dissolved in a fatty vehicle, whereas fish in the other two groups received a sham injection of the vehicle. After 24 h, one group with hydrocortisone injection and one with sham injection were exposed to dead SGPV-infected fish. Plasma cortisol level, virus kinetics, virus localization, and pathological gill were monitored for 4 weeks post-exposure. Hydrocortisone injected fish displayed higher plasma cortisol and SGPV loads than non-hydrocortisone treated fish. Signs of SGPVD and ensuing mortality appeared only in fish exposed to the virus and injected with hydrocortisone around 2 weeks post-exposure. No clinical signs of disease or mortality were recorded in the other groups. Further, gill histopathology in diseased fish correlated well with SGPV load, with the infection apparently confined to gill epithelial cells. The current findings suggest elevated plasma cortisol being a prerequisite for the development of SGPVD and recommend minimization of stressful farming activities, particularly if SGPV infection has been previously identified.


Subject(s)
Fish Diseases/microbiology , Gills/microbiology , Poxviridae Infections/veterinary , Poxviridae/physiology , Salmo salar , Animals , Hydrocortisone/administration & dosage , Norway , Poxviridae Infections/microbiology
12.
Vaccines (Basel) ; 8(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963779

ABSTRACT

Infestation with the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) affects Atlantic salmon (Salmo salar L.) production in European aquaculture. Furthermore, high levels of salmon lice in farms significantly increase challenge pressure against wild salmon populations. Currently, available control methods for salmon louse have limitations, and vaccination appears as an attractive, environmentally sound strategy. In this study, we addressed one of the main limitations for vaccine development, the identification of candidate protective antigens. Based on recent advances in tick vaccine research, herein, we targeted the salmon louse midgut function and blood digestion for the identification of candidate target proteins for the control of ectoparasite infestations. The results of this translational approach resulted in the identification and subsequent evaluation of the new candidate protective antigens, putative Toll-like receptor 6 (P30), and potassium chloride, and amino acid transporter (P33). Vaccination with these antigens provided protection in Atlantic salmon by reducing adult female (P33) or chalimus II (P30) sea lice infestations. These results support the development of vaccines for the control of sea lice infestations.

13.
Fish Shellfish Immunol ; 39(2): 178-84, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24859594

ABSTRACT

Cytotoxic T lymphocytes (CTL) recognize and kill cells infected with viruses, intracellular bacteria and tumors with MHC restriction and antigen specificity. In addition to these activities, recent studies in mammals have suggested that CTL can exhibit direct microbicidal activity. In our previous study we documented direct antibacterial activity of CD4(+) T cells and sIgM(+) cells as well as CD8α(+) T cells from immunized fish. However, we also found weak non-specific killing activity of lymphocytes against bacteria. In the present study we further analyzed the weak killing activity of lymphocytes, increasing the effector cell to target bacteria ratio from 10:1 to 10(3):1. Sensitized and non-sensitized effector lymphocytes (CD8α(+), CD4(+) and sIgM(+)) separated by MACS were incubated with target bacteria. CD8α(+) T cells from Edwardsiella tarda-immunized ginbuna crucian carp killed 98%, 100% and 70% of E. tarda, Streptococcus iniae and Escherichia coli, respectively. CD8α(+) T cells from non-immunized fish showed similar but slightly lower killing activity than sensitized cells. CD4(+) and sIgM(+) lymphocytes also showed high killing activity against E. tarda and S. iniae as found for CD8α(+) T cells, although the activity was lower against E. coli. Supernatants from all three types of lymphocytes showed microbicidal activity, although the activity was lower than that evoked by effector lymphocytes. Furthermore, the presence of a membrane between effectors and targets did not affect the killing activity. The present results suggest that both sensitized and non-sensitized lymphocytes non-specifically killed target bacteria without the need of contact. The major difference between the present and previous experiments is the E:T ratio. We suspect that there are two different mechanisms in the direct bacterial killing by lymphocytes in ginbuna.


Subject(s)
Carps , Edwardsiella tarda/immunology , Enterobacteriaceae Infections/veterinary , Escherichia coli/immunology , Fish Diseases/immunology , Streptococcus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antibodies, Monoclonal/immunology , Enterobacteriaceae Infections/immunology , Fish Diseases/microbiology , Immunomagnetic Separation
SELECTION OF CITATIONS
SEARCH DETAIL
...