Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Oral Biosci ; 58(4): 167-172, 2016 Nov.
Article in English | MEDLINE | ID: mdl-32512685

ABSTRACT

OBJECTIVES: Streptococcus pyogenes secretes streptococcal pyrogenic exotoxin B (SpeB), which cleaves kininogen to liberate bradykinin. In addition, this bacterium also has cell-associated bradykinin-degrading activity. Here, we characterized the bradykinin-degrading enzyme produced by S. pyogenes. METHODS: The effects of various peptidase inhibitors on bradykinin degradation by intact S. pyogenes and cell lysates were assessed. Cleavage of bradykinin and other peptides by a recombinant putative metalloendopeptidase (Sp-Pep) from S. pyogenes was analyzed by mass spectrometry. The enhancement of vascular permeability induced by bradykinin (before and after treatment with Sp-Pep) was evaluated in guinea pig skin. RESULTS: Various S. pyogenes strains expressed Sp-Pep. Immunoadsorption of S. pyogenes with an anti-Sp-Pep antibody showed that 80% of the bradykinin-degrading activity in S. pyogenes was due to Sp-Pep. Recombinant Sp-Pep cleaved bradykinin, and cleavage caused a loss of its extravasation-inducing potential. Sp-Pep-mediated degradation of bradykinin was 40 times more efficient than degradation of substance P and angiotensin II. While S. pyogenes secreted mature SpeB in stationary phase, this bacterium produced Sp-Pep during all tested growth phases. CONCLUSIONS: S. pyogenes produces a cell-associated metalloendopeptidase that degrades bradykinin.

2.
Clin Cancer Res ; 14(4): 1159-66, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18281550

ABSTRACT

PURPOSE: We studied whether i.v. administration of a chemokine after local tumor site irradiation could prevent remaining, as well as distant, nonirradiated tumor cell growth by leukocyte recruitment. EXPERIMENTAL DESIGN: Tumors were implanted s.c. in the right or both flanks. After local irradiation at the right flank, ECI301, a human macrophage inflammatory protein-1alpha variant was injected i.v. Tumor volumes were measured every 3 days after treatment. RESULTS: In Colon26 adenocarcinoma-bearing BALB/c mice, repeated daily administration (over 3-5 consecutive days) of 2 mug per mouse ECI301 after local irradiation of 6 Gy prolonged survival without significant toxicity, and in about half of the treated mice, the tumor was completely eradicated. Three weekly administrations of ECI301 after local irradiation also led to significant, although less effective, antitumor radiation efficacy. ECI301 also inhibited growth of other syngenic tumor grafts, including MethA fibrosarcoma (BALB/c) and Lewis lung carcinoma (C57BL/6). Importantly, tumor growth at the nonirradiated site was inhibited, indicating that ECI301 potentiated the abscopal effect of radiation. This abscopal effect observed in BALB/c and C57BL/6 mice was tumor-type independent. Leukocyte depletion studies suggest that CD8+ and CD4+ lymphocytes and NK1.1 cells were involved. CONCLUSIONS: Marked inhibition of tumor growth at the irradiated site, with complete tumor eradication and consistent induction of the abscopal effect, was potentiated by i.v. administration of ECI301. The results of this study may offer a new concept for cancer therapy, namely chemokine administration after local irradiation, leading to development of novel therapeutics for the treatment of advanced metastatic cancer.


Subject(s)
Chemokine CCL3/administration & dosage , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Neoplasms, Experimental/radiotherapy , Animals , Combined Modality Therapy , Female , Humans , Immunohistochemistry , Male , Mice , Radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...