Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 214(Pt 1): 113808, 2022 11.
Article in English | MEDLINE | ID: mdl-35798264

ABSTRACT

Increasing human population, deforestation and man-made climate change are likely to exacerbate the negative effects on freshwater ecosystems and species endangerment. Consequently, the biodiversity of freshwater continues to dwindle at an alarming rate. However, this particular topic lacks sufficient attention from conservation ecologists and policymakers, resulting in a dearth of data and comprehensive reviews on freshwater biodiversity, specifically. Despite the widespread awareness of risks to freshwater biodiversity, organized action to reverse this decline has been lacking. This study reviews prospective conservation and management strategies for freshwater biodiversity and their associated challenges, identifying current key threats to freshwater biodiversity. Engineered nanomaterials pose a significant threat to aquatic species, and will make controlling health risks to freshwater biodiversity increasingly challenging in the future. When fish are exposed to nanoparticles, the surface area of their respiratory and ion transport systems can decline to 60% of their total surface area, posing serious health risks. Also, about 50% of freshwater fish species are threatened by climate change, globally. Freshwater biodiversity that is heavily reliant on calcium perishes when the calcium content of their environments degrades, posing another severe threat to world biodiversity. To improve biodiversity, variables such as species diversity, population and water quality, and habitat are essential components that must be monitored continuously. Existing research on freshwater biota and ecosystems is still lacking. Therefore, data collection and the establishment of specialized policies for the conservation of freshwater biodiversity should be prioritized.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , Calcium , Fishes , Fresh Water , Humans , Prospective Studies
2.
Chemosphere ; 306: 135527, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780994

ABSTRACT

Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.


Subject(s)
Ammonium Compounds , Water Purification , Membranes, Artificial , Osmosis , Phosphorus , Sodium Chloride , Wastewater , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...