Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Metab ; 22(8): 628-644, 2021.
Article in English | MEDLINE | ID: mdl-34082678

ABSTRACT

An "endocrine disruptor" has been broadly defined as an exogenous chemical that interferes with the production, release, transportation, metabolism, binding, action, or the elimination of endogenous hormones, which are responsible for homeostasis, reproduction, development or behaviour. Diverse groups of chemicals such as pharmaceuticals, phytoestrogens, natural hormones, and synthetic chemicals such as pesticides, plasticizers, phthalates, parabens, polychlorinated/polybrominated biphenyls, bisphenols are shown to interfere with the endocrine system, and they have been defined as EDs in the last three decades. As for all chemicals, the biotransformation of EDs has a decisive role in their potential toxic effects. Humans are exposed to vast amounts of diverse chemicals throughout their lives. Fortunately, most of the chemicals are converted via biotransformation reactions catalyzed by the enzymes, into more hydrophilic metabolites, which are readily excreted in urine or bile. Biotransformation reactions resulting in less toxic metabolites are known as detoxification. However, some biotransformation reactions are called bioactivation, in which more toxic metabolites are formed. In the case of EDs, metabolites formed via bioactivation usually have a higher affinity for a hormone receptor or induce/inhibit an enzyme involved in the synthesis or catabolism of an endogenous hormone more dramatically compared to their parent compound. In the present review, the role of bioactivation in endocrine modulating effects of chemicals from all groups of EDs, namely endogenous estrogens, phytoestrogens, synthetic/industrial chemicals, and pharmaceuticals it can be were discussed.


Subject(s)
Endocrine Disruptors/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Animals , Biotransformation , Estrogens/metabolism , Humans
2.
Molecules ; 26(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805996

ABSTRACT

Oxidative stress is defined as a disturbance in the prooxidant/antioxidant balance in favor of the former and a loss of control over redox signaling processes, leading to potential biomolecular damage. It is involved in the etiology of many diseases, varying from diabetes to neurodegenerative diseases and cancer. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor and reported as one of the most important oxidative stress regulators. Due to its regulatory role in the expression of numerous cytoprotective genes involved in the antioxidant and anti-inflammatory responses, the modulation of NRF2 seems to be a promising approach in the prevention and treatment of cancer. Breast cancer is the prevalent type of tumor in women and is the leading cause of death among female cancers. Oxidative stress-related mechanisms are known to be involved in breast cancer, and therefore, NRF2 is considered to be beneficial in its prevention. However, its overactivation may lead to a negative clinical impact on breast cancer therapy by causing chemoresistance. Some known "oxidative stress modulators", such as melatonin and polyphenols, are suggested to play an important role in the prevention and treatment of cancer, where the activation of NRF2 is reported as a possible underlying mechanism. In the present review, the potential involvement of oxidative stress and NRF2 in breast cancer will be reviewed, and the role of the NRF2 modulators-namely, polyphenols and melatonin-in the treatment of breast cancer will be discussed.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm/drug effects , Melatonin/therapeutic use , NF-E2-Related Factor 2/metabolism , Neoplasm Proteins/metabolism , Oxidative Stress/drug effects , Polyphenols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans
3.
Bioorg Chem ; 104: 104219, 2020 11.
Article in English | MEDLINE | ID: mdl-32916391

ABSTRACT

Over the last decade, there has been substantial interest in the use of melatonin (MLT) and MLT-like compounds in the treatment of several diseases. MLT can scavenge different reactive oxygen species and can also stimulate the synthesis of antioxidant enzymes. Our ongoing study relies on changing the groups in the different modifiable sites of the indole ring to increase the antioxidant activity. In this study a new approach for substitution of indole ring as indole based MLT analogue was proposed. We report the synthesis and characterization of a series of new indole-7-aldehyde hydrazide/hydrazone derivatives as indole-based MLT analogues. Anticancer potential of the compounds were evaluated both by their antioxidant and CYP1 inhibitory activities. In vitro antioxidant capacity of the compounds was investigated both in a cell-based (DCFH assay) and a cell-free (DPPH assay) assay. Potential inhibitory effects of the compounds on CYP1 catalytic activity were investigated via EROD assay. Cytotoxic activity of the compounds was further evaluated by the MTT assay in CHO-K1 cells. MLT analogues having an o-halogenated aromatic moiety exhibited effective antioxidant properties without having any cytotoxic effect. In conclusion, MLT derivatives represent promising scaffolds for discovery of effective antioxidant agents.


Subject(s)
Aldehydes/pharmacology , Antioxidants/pharmacology , Indoles/pharmacology , Melatonin/pharmacology , Aldehydes/chemical synthesis , Aldehydes/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , CHO Cells , Cells, Cultured , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Indoles/chemical synthesis , Indoles/chemistry , Melatonin/chemical synthesis , Melatonin/chemistry , Molecular Structure , Picrates/antagonists & inhibitors , Structure-Activity Relationship
4.
J Vis Exp ; (160)2020 06 18.
Article in English | MEDLINE | ID: mdl-32628158

ABSTRACT

Measuring the intracellular oxidation/reduction balance provides an overview of the physiological and/or pathophysiological redox status of an organism. Thiols are especially important for illuminating the redox status of cells via their reduced dithiol and oxidized disulfide ratios. Engineered cysteine-containing fluorescent proteins open a new era for redox-sensitive biosensors. One of them, redox-sensitive green fluorescent protein (roGFP), can easily be introduced into cells with adenoviral transduction, allowing the redox status of subcellular compartments to be evaluated without disrupting cellular processes. Reduced cysteines and oxidized cystines of roGFP have excitation maxima at 488 nm and 405 nm, respectively, with emission at 525 nm. Assessing the ratios of these reduced and oxidized forms allows the convenient calculation of redox balance within the cell. In this method article, immortalized human triple-negative breast cancer cells (MDA-MB-231) were used to assess redox status within the living cell. The protocol steps include MDA-MB-231 cell line transduction with adenovirus to express cytosolic roGFP, treatment with H2O2, and assessment of cysteine and cystine ratio with both flow cytometry and fluorescence microscopy.


Subject(s)
Cell Compartmentation , Green Fluorescent Proteins/metabolism , Biosensing Techniques/methods , Cell Line, Tumor , Cysteine/metabolism , Cystine/metabolism , Cytosol/metabolism , Data Analysis , Humans , Hydrogen Peroxide/metabolism , Image Processing, Computer-Assisted , Microscopy, Fluorescence , Oxidation-Reduction , Subcellular Fractions/metabolism , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...