Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(17): 14748-14757, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28470496

ABSTRACT

This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with ß-HCH (45 mg kg-1) and γ-HCH (lindane, 25 mg kg-1) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H2O2 alone, H2O2/FeII, Na2S2O8 alone, Na2S2O8/FeII, and KMnO4. Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H2O2 improved the oxidation efficiency while in Na2S2O8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by FeII-activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 µm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO4 > Na2S2O8/FeII > Na2S2O8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.


Subject(s)
Hexachlorocyclohexane/chemistry , Soil Pollutants/chemistry , Hydrogen Peroxide , Oxidation-Reduction , Soil
2.
J Agric Food Chem ; 63(20): 4922-32, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25942486

ABSTRACT

This study investigates the concentrations of 54 multiclass pesticides during the transformation processes from rose petal to concrete and absolute using roses spiked with pesticides as a model. The concentrations of the pesticides were followed during the process of transforming the spiked rose flowers from an organic field into concrete and then into absolute. The rose flowers, the concrete, and the absolute, as well as their transformation intermediates, were analyzed for pesticide content using gas chromatography/tandem mass spectrometry. We observed that all the pesticides were extracted and concentrated in the absolute, with the exception of three molecules: fenthion, fenamiphos, and phorate. Typical pesticides were found to be concentrated by a factor of 100-300 from the rose flowers to the rose absolute. The observed effect of pesticide enrichment was also studied in roses and their extracts from four classically phytosanitary treated fields. Seventeen pesticides were detected in at least one of the extracts. Like the case for the spiked samples in our model, the pesticides present in the rose flowers from Turkey were concentrated in the absolute. Two pesticides, methidathion and chlorpyrifos, were quantified in the rose flowers at approximately 0.01 and 0.01-0.05 mg kg(-1), respectively, depending on the treated field. The concentrations determined for the corresponding rose absolutes were 4.7 mg kg(-1) for methidathion and 0.65-27.25 mg kg(-1) for chlorpyrifos.


Subject(s)
Perfume/analysis , Pesticide Residues/chemistry , Rosa/chemistry , Flowers/chemistry , Gas Chromatography-Mass Spectrometry
3.
Anal Bioanal Chem ; 406(30): 8041-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25344932

ABSTRACT

Damascena and centifolia roses are cultivated worldwide for their petal extracts that contain key odorant ingredients of perfumes. The analytical identification and quantification of pesticides in rose petals have never been described in the literature. Here, we report on a newly developed method using dispersive solid-phase extraction (d-SPE) cleanup followed by gas chromatography-tandem mass spectrometry for the quantitative determination of multi-residue pesticides in rose petals. Analytes were extracted from the matrix using acetonitrile and a mixture of salts containing magnesium sulfate, sodium citrate, sodium chloride, and sodium sesquihydrate. Samples were cleaned up twice by d-SPE applying primary and secondary amines (PSAs), magnesium sulfate, C18, and graphitized carbon black (GCB). Two fortification levels of 0.05 and 0.5 mg kg(-1) were assessed for method validation purposes. The obtained pesticide recoveries were in the range of 70-120 % with a relative standard deviation (RSD) of less than 20 %. The newly developed method was allowed for the quantification of 57 pesticides residues. It was applied to pesticide residue detection in rose petals from an organic field, without treatment, compared to those from a field with classic phytosanitary treatment using fungicide and/or insecticide. We did not detect pesticide residues in rose petals from the organic field. The classically treated samples of roses contained pesticides such as chlorpyriphos and methidathion which are in accordance with the previous application of these pesticides on the roses. Insecticides were quantified at 0.05 mg kg(-1) rose petal maximum.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Pesticide Residues/analysis , Rosa/chemistry , Solid Phase Extraction/methods
4.
Anal Bioanal Chem ; 406(4): 971-80, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23797908

ABSTRACT

Natural extracts used by the fragrance and cosmetics industries, namely essential oils, concretes, resinoids, and absolutes, are produced from natural raw materials. These are often cultivated by use of monoculture techniques that involve the use of different classes of xenobiotica, including pesticides. Because of these pesticides' potential effect on public health and the environment, laws regarding permitted residual levels of pesticides used in cultivation of raw materials for fragrance and cosmetic products are expected to become stricter. The purpose of this review is to present and classify pesticides commonly used in the cultivation of these natural raw materials. We will summarize the most recent regulations, and discuss publications on detection of pesticides via chemical analysis of raw natural extracts. Advances in analytical chemistry for identification and quantification of pesticides will be presented, including both sample preparation and modern separation and detection techniques, and examples of the identification and quantification of individual pesticides present in natural extracts, for example essential oils, will be provided.


Subject(s)
Biological Products/analysis , Oils, Volatile/analysis , Pesticides/analysis , Plant Extracts/analysis , Plants/chemistry , Animals , Biological Products/standards , Europe , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...