Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 100: 71-83, 2018 05.
Article in English | MEDLINE | ID: mdl-29494891

ABSTRACT

Evidence suggest that prenatal immune system disturbance contributes largely to the pathophysiology of neuropsychiatric disorders. We investigated if maternal immune activation (MIA) could induce inflammatory alterations in fetal brain and pregnant rats. Adult rats subjected to MIA also were investigated to evaluate if ketamine potentiates the effects of infection. On gestational day 15, Wistar pregnant rats received lipopolysaccharide (LPS) to induce MIA. After 6, 12 and 24 h, fetus brain, placenta, and amniotic fluid were collected to evaluate early effects of LPS. MIA increased oxidative stress and expression of metalloproteinase in the amniotic fluid and fetal brain. The blood brain barrier (BBB) integrity in the hippocampus and cortex as well integrity of placental barrier (PB) in the placenta and fetus brain were dysregulated after LPS induction. We observed elevated pro- and anti-inflammatory cytokines after LPS in fetal brain. Other group of rats from postnatal day (PND) 54 after LPS received injection of ketamine at the doses of 5, 15, and 25 mg/kg. On PND 60 rats were subjected to the memories tests, spontaneous locomotor activity, and pre-pulse inhibition test (PPI). Rats that receive MIA plus ketamine had memory impairment and a deficit in the PPI. Neurotrophins were increased in the hippocampus and reduced in the prefrontal cortex in the LPS plus ketamine group. MIA induced oxidative stress and inflammatory changes that could be, at least in part, related to the dysfunction in the BBB and PB permeability of pregnant rats and offspring. Besides, this also generates behavioral deficits in the rat adulthood's that are potentiated by ketamine.


Subject(s)
Behavior, Animal , Blood-Brain Barrier/immunology , Brain , Cytokines/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Inflammation/immunology , Ketamine/pharmacology , Lipopolysaccharides/pharmacology , Memory Disorders , Placenta/immunology , Pregnancy Complications/immunology , Prepulse Inhibition , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/drug effects , Brain/immunology , Brain/physiopathology , Embryo, Mammalian , Female , Inflammation/etiology , Male , Memory Disorders/chemically induced , Memory Disorders/immunology , Memory Disorders/physiopathology , Pregnancy , Pregnancy Complications/chemically induced , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Rats , Rats, Wistar
2.
Curr Neurovasc Res ; 11(3): 210-22, 2014.
Article in English | MEDLINE | ID: mdl-24845856

ABSTRACT

Pneumococcal meningitis is associated with neurologic sequelae, such as learning and memory impairment. Most recently, a nonbacteriolytic antibiotic has been investigated to minimise the inflammatory host response and prevent cognitive damage. In this study, we compared daptomycin (DPTO) or ceftriaxone (CFX) treatment on the inflammatory parameters and on the blood-brain barrier (BBB) integrity in experimental pneumococcal meningitis. In the first experiment, the animals received 10 µl of a Streptococcus pneumoniae suspension or artificial cerebrospinal fluid by intracerebroventricular (i.c.v.) and were treated with CFX or DPTO at 18 h post-infection. The animals were euthanised at 18, 20, 24, 36 and 40 h post-infection. In the hippocampus, brain-derived neurotrophic factor (BDNF), tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and IL-10 levels were not different between treatment groups; however, IL-4 and cytokine-induced neutrophil chemoattractant 1 (CINC-1) levels decreased in the CFX group. In the frontal cortex, TNF-α, IL- 4, IL-6, IL-10 and BDNF levels were not different between treatment groups. Only CINC-1 levels decreased at 40 h postinfection with CFX treatment. In the second experiment, the animals received DPTO or CFX for 7 days and were euthanised 10 days after pneumococcal meningitis induction. TNF-α, IL-6, IL-10, CINC-1 and BDNF levels were not different between treatment groups in the hippocampus; however, IL-4 levels decreased in CFX group. In the third experiment, the animals received 10 µl of an S. pneumoniae suspension or artificial CSF by i.c.v. and were treated with a single dose of CFX or DTPO antibiotic; assessment of the BBB breakdown showed that both antibiotics prevented the BBB disruption. Both treatments equally protected the BBB integrity, and there were no significant difference in cytokine production.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Blood-Brain Barrier/drug effects , Ceftriaxone/therapeutic use , Cytokines/metabolism , Daptomycin/therapeutic use , Meningitis, Pneumococcal/drug therapy , Meningitis, Pneumococcal/pathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Male , Rats , Rats, Wistar , Streptococcus pneumoniae/pathogenicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...