Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Res ; 392(3): 659-670, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004577

ABSTRACT

The gut-brain axis has received increasing attention recently due to evidence that colonic microbes can affect brain function and behavior. However, little is known about the innervation of the colon by a major component of the gut-brain axis, vagal afferent neurons. Furthermore, it is currently unknown whether individual NG neurons or DRG neurons innervate both the proximal and distal colon. We aimed to quantify the number of vagal and spinal afferent neurons that innervate the colon; and determine whether these individual neurons simultaneously innervate the mouse proximal and distal colon. C57Bl/6 mice received injections of a combination of retrograde tracers that were either injected into the muscularis externa of the proximal or the distal colon: fast blue, DiI and DiO. Five to seven percent of lumbosacral and thoracolumbar spinal afferent neurons, and 25% of vagal afferent neurons were labelled by injections of DiI and DiO into the colon. We also found that approximately 8% of NG neurons innervate the distal colon. Ten percent of labeled thoracolumbar and 15% of labeled lumbosacral DRG neurons innervate both the distal and proximal colon. Eighteen percent of labeled NG neurons innervated both the distal and proximal colon. In conclusion, vagal afferent innervation of the distal colon is less extensive than the proximal colon, whereas a similar gradient was not observed for the spinal afferent innervation. Furthermore, overlap appears to exist between the receptive fields of vagal and spinal afferent neurons that innervate the proximal and distal colon.


Subject(s)
Neurons, Afferent , Neurons , Mice , Animals , Colon/innervation
2.
J Physiol ; 598(11): 2137-2151, 2020 06.
Article in English | MEDLINE | ID: mdl-32134496

ABSTRACT

KEY POINTS: The vagus nerve has been implicated in mediating behavioural effects of the gut microbiota on the central nervous system. This study examined whether the secretory products of commensal gut bacteria can modulate the excitability of vagal afferent neurons with cell bodies in nodose ganglia. Cysteine proteases from commensal bacteria increased the excitability of vagal afferent neurons via activation of protease-activated receptor 2 and modulation of the voltage dependence of Na+ conductance activation. Lipopolysaccharide, a component of the cell wall of gram-negative bacteria, increased the excitability of nodose ganglia neurons via TLR4-dependent activation of nuclear factor kappa B. Our study identified potential mechanisms by which gut microbiota influences the activity of vagal afferent pathways, which may in turn impact on autonomic reflexes and behaviour. ABSTRACT: Behavioural studies have implicated vagal afferent neurons as an important component of the microbiota-gut-brain axis. However, the mechanisms underlying the ability of the gut microbiota to affect vagal afferent pathways are unclear. We examined the effect of supernatant from a community of 33 commensal gastrointestinal bacterial derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) on the excitability of mouse vagal afferent neurons. Perforated patch clamp electrophysiology was used to measure the excitability of dissociated nodose ganglion (NG) neurons. NG neuronal excitability was assayed by measuring the amount of current required to elicit an action potential, the rheobase. MET-1 supernatant increased the excitability of NG neurons by hyperpolarizing the voltage dependence of activation of Na+ conductance. The increase in excitability elicited by MET-1 supernatant was blocked by the cysteine protease inhibitor E-64 (30 nm). The protease activated receptor-2 (PAR2 ) antagonist (GB 83, 10 µm) also blocked the effect of MET-1 supernatant on NG neurons. Supernatant from Lactobacillus paracasei 6MRS, a component of MET-1, recapitulated the effect of MET-1 supernatant on NG neurons. Lastly, we compared the effects of MET-1 supernatant and lipopolysaccharide (LPS) from Escherichia coli 05:B5 on NG neuron excitability. LPS increased the excitability of NG neurons in a toll-like receptor 4 (TLR4 )-dependent and PAR2 -independent manner, whereas the excitatory effects of MET-1 supernatant were independent of TLR4 activation. Together, our findings suggest that cysteine proteases from commensal bacteria increase the excitability of vagal afferent neurons by the activation of PAR2 .


Subject(s)
Gastrointestinal Microbiome , Nodose Ganglion , Animals , Bacteria , Ecosystem , Mice , Neurons , Neurons, Afferent , Peptide Hydrolases , Vagus Nerve
SELECTION OF CITATIONS
SEARCH DETAIL
...