Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Intensive Care Med Exp ; 12(1): 54, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856861

ABSTRACT

BACKGROUND: Continuous monitoring of mitral annular plane systolic excursion (MAPSE) using transesophageal echocardiography (TEE) may improve the evaluation of left ventricular (LV) function in postoperative intensive care patients. We aimed to assess the utility of continuous monitoring of LV function using TEE and artificial intelligence (autoMAPSE) in postoperative intensive care patients. METHODS: In this prospective observational study, we monitored 50 postoperative intensive care patients for 120 min immediately after cardiac surgery. We recorded a set of two-chamber and four-chamber TEE images every five minutes. We defined monitoring feasibility as how often the same wall from the same patient could be reassessed, and categorized monitoring feasibility as excellent if the same LV wall could be reassessed in ≥ 90% of the total recordings. To compare autoMAPSE with manual measurements, we rapidly recorded three sets of repeated images to assess precision (least significant change), bias, and limits of agreement (LOA). To assess the ability to identify changes (trending ability), we compared changes in autoMAPSE with the changes in manual measurements in images obtained during the initiation of cardiopulmonary bypass as well as before and after surgery. RESULTS: Monitoring feasibility was excellent in most patients (88%). Compared with manual measurements, autoMAPSE was more precise (least significant change 2.2 vs 3.1 mm, P < 0.001), had low bias (0.4 mm), and acceptable agreement (LOA - 2.7 to 3.5 mm). AutoMAPSE had excellent trending ability, as its measurements changed in the same direction as manual measurements (concordance rate 96%). CONCLUSION: Continuous monitoring of LV function was feasible using autoMAPSE. Compared with manual measurements, autoMAPSE had excellent trending ability, low bias, acceptable agreement, and was more precise.

2.
Ultrasound Med Biol ; 50(6): 797-804, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485534

ABSTRACT

OBJECTIVE: Evaluation of left ventricular (LV) function in critical care patients is useful for guidance of therapy and early detection of LV dysfunction, but the tools currently available are too time-consuming. To resolve this issue, we previously proposed a method for the continuous and automatic quantification of global LV function in critical care patients based on the detection and tracking of anatomical landmarks on transesophageal heart ultrasound. In the present study, our aim was to improve the performance of mitral annulus detection in transesophageal echocardiography (TEE). METHODS: We investigated several state-of-the-art networks for both the detection and tracking of the mitral annulus in TEE. We integrated the networks into a pipeline for automatic assessment of LV function through estimation of the mitral annular plane systolic excursion (MAPSE), called autoMAPSE. TEE recordings from a total of 245 patients were collected from St. Olav's University Hospital and used to train and test the respective networks. We evaluated the agreement between autoMAPSE estimates and manual references annotated by expert echocardiographers in 30 Echolab patients and 50 critical care patients. Furthermore, we proposed a prototype of autoMAPSE for clinical integration and tested it in critical care patients in the intensive care unit. RESULTS: Compared with manual references, we achieved a mean difference of 0.8 (95% limits of agreement: -2.9 to 4.7) mm in Echolab patients, with a feasibility of 85.7%. In critical care patients, we reached a mean difference of 0.6 (95% limits of agreement: -2.3 to 3.5) mm and a feasibility of 88.1%. The clinical prototype of autoMAPSE achieved real-time performance. CONCLUSION: Automatic quantification of LV function had high feasibility in clinical settings. The agreement with manual references was comparable to inter-observer variability of clinical experts.


Subject(s)
Anatomic Landmarks , Echocardiography, Transesophageal , Ventricular Function, Left , Humans , Echocardiography, Transesophageal/methods , Ventricular Function, Left/physiology , Anatomic Landmarks/diagnostic imaging , Female , Male , Aged , Middle Aged , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Mitral Valve/diagnostic imaging , Mitral Valve/physiopathology , Image Interpretation, Computer-Assisted/methods
3.
J Clin Monit Comput ; 38(2): 281-291, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280975

ABSTRACT

We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient's hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland-Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (- 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring.


Subject(s)
Hemodynamic Monitoring , Ventricular Dysfunction, Left , Humans , Ventricular Function, Left , Echocardiography, Transesophageal , Ventricular Dysfunction, Left/diagnostic imaging , Retrospective Studies , Artificial Intelligence , Mitral Valve/diagnostic imaging
4.
Artif Intell Med ; 144: 102646, 2023 10.
Article in English | MEDLINE | ID: mdl-37783546

ABSTRACT

Perioperative monitoring of cardiac function is beneficial for early detection of cardiovascular complications. The standard of care for cardiac monitoring performed by trained cardiologists and anesthesiologists involves a manual and qualitative evaluation of ultrasound imaging, which is a time-demanding and resource-intensive process with intraobserver- and interobserver variability. In practice, such measures can only be performed a limited number of times during the intervention. To overcome these difficulties, this study presents a robust method for automatic and quantitative monitoring of cardiac function based on 3D transesophageal echocardiography (TEE) B-mode ultrasound recordings of the left ventricle (LV). Such an assessment obtains consistent measurements and can produce a near real-time evaluation of ultrasound imagery. Hence, the presented method is time-saving and results in increased accessibility. The mitral annular plane systolic excursion (MAPSE), characterizing global LV function, is estimated by landmark detection and cardiac view classification of two-dimensional images extracted along the long-axis of the ultrasound volume. MAPSE estimation directly from 3D TEE recordings is beneficial since it removes the need for manual acquisition of cardiac views, hence decreasing the need for interference by physicians. Two convolutional neural networks (CNNs) were trained and tested on acquired ultrasound data of 107 patients, and MAPSE estimates were compared to clinically obtained references in a blinded study including 31 patients. The proposed method for automatic MAPSE estimation had low bias and low variability in comparison to clinical reference measures. The method accomplished a mean difference for MAPSE estimates of (-0.16±1.06) mm. Thus, the results did not show significant systematic errors. The obtained bias and variance of the method were comparable to inter-observer variability of clinically obtained MAPSE measures on 2D TTE echocardiography. The novel pipeline proposed in this study has the potential to enhance cardiac monitoring in perioperative- and intensive care settings.


Subject(s)
Artificial Intelligence , Mitral Valve , Humans , Mitral Valve/diagnostic imaging , Ultrasonography , Echocardiography/methods , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...