Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794772

ABSTRACT

Cancer has been recognized as one of the deadliest diseases in the world in recent years. By chemically tailoring specific properties, anticancer agents can be prepared very effectively for the treatment of various cancer types. In this manner, as anticancer agents, a series of soluble metal-free and metallophthalocyanines carrying cinnamyloxy-groups at peripheral ß-positions have been prepared. All synthesized phthalocyanines were characterized by various spectroscopic approaches such as ultraviolet - visible (UV - Vis), Fourier transform infrared (FT-IR), and matrix-assisted laser deionization/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) techniques. These compounds are highly soluble in dimethyl sulfoxide (DMSO) and soluble in common organic solvents. The spectroscopic properties, cytotoxicity, and theoretical calculations of these complexes have been investigated. In cytotoxicity tests, compounds 1, 4, and 7 are the most active against HT-29 cell lines with IC50 values of 36.9 µM, 32.5 µM, and 51.1 µM, respectively. Also, the most and the least cytotoxic compounds against healthy CCD cell line is compounds 5 and 6 with the IC50 value of 13.4 µM and >250 µM, respectively. The PDB ID:4BQG target protein representing the HT-29 cancer cell line and the anti-cancer activities of phthalonitrile and its phthalocyanines were supported by molecular docking studies. Density Functional Theory (DFT) study supported the experimental results, including the spectral data, and implied that the compounds 5-7 are comparable by their characteristics, such as electronic properties, optical properties, electrostatic potentials, reactivity parameters, with the earlier studied compounds 2-4, which were successfully proved to be good candidates for cancer treatment.Communicated by Ramaswamy H. Sarma.

2.
Macromol Rapid Commun ; 37(6): 521-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26847166

ABSTRACT

A novel route for the synthesis of poly(ethylene glycol)-b-polystyrene copolymer, starting from commercially available poly(ethylene glycol) methyl ether and azido terminated polystyrene prepared by atom transfer radical polymerization and subsequent nucleophilic substitution, is applied with simplicity and high efficiency. The combination of photoinduced copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and ketene chemistry reactions proceeds either simultaneously or sequentially in a one-pot procedure under near-visible light irradiation. In both cases, excellent block copolymer formations are achieved, with an average molecular weight of around 7000 g mo1(-1) and a polydispersity index of 1.20.


Subject(s)
Alkynes/chemistry , Azides/chemistry , Copper/chemistry , Ethylenes/chemistry , Ketones/chemistry , Polyethylene Glycols/chemistry , Polystyrenes/chemical synthesis , Catalysis , Click Chemistry , Cycloaddition Reaction , Molecular Structure , Polyethylene Glycols/chemical synthesis , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...