Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 383: 110655, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37573926

ABSTRACT

In this study, a total of 12 coumarin-chalcone derivatives, 6 of which are original were synthesized. The structures of the newly synthesized compounds were elucidated by 1H NMR, 13C NMR, IR, and elemental analysis methods (7g-7l). The antioxidant potencies measured by using CUPRAC method (Trolox equivalent total antioxidant capacity) were as follows: 7j > 7i > 7c > 7d > 7k > 7l > 7f > 7h > 7e > 7g > 7a > 7b. Furthermore, the compounds were evaluated against human carbonic anhydrases I, II, acetylcholinesterase and α-glycosidase enzymes. Compounds 7c, 7e, 7g, 7i, 7j and 7l showed promising human carbonic anhydrase I inhibition compared to the standard Acetazolamide (Ki: 16.64 ± 4.72-49.82 ± 5.82 nM vs Ki: 57.64 ± 5.41 nM). In addition, all compounds exhibited strong inhibition against acetylcholinesterase and α-glycosidase. Ki values were between 2.39 ± 0.97-9.35 ± 3.95 nM (Tacrine Ki: 13.78 ± 4.36 nM) for acetylcholinesterase, and 14.49 ± 8.51-75.67 ± 26.38 nM (Acarbose Ki: 12600 ± 78.00 nM) for α-glycosidase. Binding of 7g was predicted using molecular docking and stability of the complex was confirmed with molecular dynamics simulations which shed a light on the observed activity against acetylcholinesterase. Finally, cyclic voltammetry was also used for the electrochemical characterization of the synthesized compounds.


Subject(s)
Chalcone , Coumarins , Humans , Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors , Chalcone/pharmacology , Cholinesterase Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Coumarins/pharmacology
2.
J Biomed Mater Res B Appl Biomater ; 109(10): 1455-1464, 2021 10.
Article in English | MEDLINE | ID: mdl-33501724

ABSTRACT

This study aimed to develop a sensitive lateral flow test strip for the detection of bisphenol A (BPA) in breast milk. Conventional nitrocellulose test membrane was coated with the coaxial nanofiber, consisting of the inner polycaprolactone (PCL) and the outer PCL/silk fibroin (SF) mixture, to decrease the flow rate of the breast milk in the lateral flow assay (LFA). The nanofiber was prepared by using coaxial electrospinning, and BPA antibody was immobilized physically to the nanofiber. This nanofiber was used as a test membrane in the LFA. Color changes on the test membrane were evaluated as the signal intensity of the BPA. Breast milk creates a background on surfaces due to its structural properties. This background was detected by comparing the signal intensity with the signal intensity of water. The higher signal intensity was found in water samples when compared to breast milk samples. Although the detection limit is 2 ng/ml in both coaxial PCL/SF nanofiber and nitrocellulose (NC) test membranes, the color intensity increased with the increasing BPA concentration in the coaxial PCL/SF nanofiber. As a new dimension, the coaxial PCL/SF nanofiber provided higher color intensity than the NC membrane. In conclusion, a sensitive onsite method was developed for the detection of BPA in breast milk by using new coaxial PCL/SF nanofiber as a test membrane in LFA.


Subject(s)
Benzhydryl Compounds/analysis , Fibroins/chemistry , Milk, Human/chemistry , Nanofibers/chemistry , Phenols/analysis , Polyesters/chemistry , Antibodies/chemistry , Antibodies/immunology , Benzhydryl Compounds/immunology , Collodion/chemistry , Female , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Phenols/immunology , Surface Properties
3.
Protein J ; 39(5): 591-597, 2020 10.
Article in English | MEDLINE | ID: mdl-32989648

ABSTRACT

Human milk proteins are known as vital molecules for infant development and growth. Tissue factor is one of these human milk proteins that its role in human milk has not been cleared yet. Therefore, the first aim of this study was to detect the tissue factor activity of human milk and also was to investigate the effect of extended freezer storage on the milk tissue factor activity. The relationship between the tissue factor activity and macronutrient content and pH of milk was also investigated in this study. Under this aim, mature human milk samples were obtained from 8 healthy women. Collected human milk samples were pooled and divided into aliquots that were stored at - 20 °C until the day to be analyzed. Milk tissue factor activity, protein, fat, lactose, energy, water, density, and pH levels were determined for up to six months. By two months from the freezing, tissue factor activity did not significantly change but significantly decreased at the end of the six months. From the first month to six months from freezing, lactose, protein, fat, and energy levels showed a significant decline. Milk pH did not change with freezing at the end of 6 months. In conclusion, TF activity maintained its first-day activity until the second month after being pumped. The increased interest in breast milk leads us to believe that the gap existing in the knowledge of breast milk bioactive components like TF will be complemented with new research data.


Subject(s)
Freezing , Milk, Human/chemistry , Nutrients/chemistry , Preservation, Biological , Thromboplastin/chemistry , Female , Humans , Hydrogen-Ion Concentration , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...