Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(38): 43897-43906, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121320

ABSTRACT

Discovery of ferroelectricity in HfO2 has sparked a lot of interest in its use in memory and logic due to its CMOS compatibility and scalability. Devices that use ferroelectric HfO2 are being investigated; for example, the ferroelectric field-effect transistor (FEFET) is one of the leading candidates for next generation memory technology, due to its area, energy efficiency and fast operation. In an FEFET, a ferroelectric layer is deposited on Si, with an SiO2 layer of ∼1 nm thickness inevitably forming at the interface. This interfacial layer (IL) increases the gate voltage required to switch the polarization and write into the memory device, thereby increasing the energy required to operate FEFETs, and makes the technology incompatible with logic circuits. In this work, it is shown that a Pt/Ti/thin TiN gate electrode in a ferroelectric Hf0.5Zr0.5O2 based metal-oxide-semiconductor (MOS) structure can remotely scavenge oxygen from the IL, thinning it down to ∼0.5 nm. This IL reduction significantly reduces the ferroelectric polarization switching voltage with a ∼2× concomitant increase in the remnant polarization and a ∼3× increase in the abruptness of polarization switching consistent with density functional theory (DFT) calculations modeling the role of the IL layer in the gate stack electrostatics. The large increase in remnant polarization and abruptness of polarization switching are consistent with the oxygen diffusion in the scavenging process reducing oxygen vacancies in the HZO layer, thereby depinning the polarization of some of the HZO grains.

2.
ACS Appl Mater Interfaces ; 14(32): 36771-36780, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35929399

ABSTRACT

Nanoscale polycrystalline thin-film heterostructures are central to microelectronics, for example, metals used as interconnects and high-K oxides used in dynamic random-access memories (DRAMs). The polycrystalline microstructure and overall functional response therein are often dominated by the underlying substrate or layer, which, however, is poorly understood due to the difficulty of characterizing microstructural correlations at a statistically meaningful scale. Here, an automated, high-throughput method, based on the nanobeam electron diffraction technique, is introduced to investigate orientational relations and correlations between crystallinity of materials in polycrystalline heterostructures over a length scale of microns, containing several hundred individual grains. This technique is employed to perform an atomic-scale investigation of the prevalent near-coincident site epitaxy in nanocrystalline ZrO2 heterostructures, the workhorse system in DRAM technology. The power of this analysis is demonstrated by answering a puzzling question: why does polycrystalline ZrO2 transform dramatically from being antiferroelectric on polycrystalline TiN/Si to ferroelectric on amorphous SiO2/Si?

3.
Nat Commun ; 13(1): 1228, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264570

ABSTRACT

Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2 and ZrO2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.

4.
Sci Rep ; 11(1): 12474, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34127695

ABSTRACT

Flourite-structure ferroelectrics (FEs) and antiferroelectrics (AFEs) such as HfO2 and its variants have gained copious attention from the semiconductor community, because they enable complementary metal-oxide-semiconductor (CMOS)-compatible platforms for high-density, high-performance non-volatile and volatile memory technologies. While many individual experiments have been conducted to characterize and understand fluorite-structure FEs and AFEs, there has been little effort to aggregate the information needed to benchmark and provide insights into their properties. We present a fast and robust modeling framework that automatically fits the Preisach model to the experimental polarization ([Formula: see text]) versus electric field ([Formula: see text]) hysteresis characterizations of fluorite-structure FEs. The modifications to the original Preisach model allow the double hysteresis loops in fluorite-structure antiferroelectrics to be captured as well. By fitting the measured data reported in the literature, we observe that ferroelectric polarization and dielectric constant decrease as the coercive field rises in general.

5.
Nanotechnology ; 31(50): 505707, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-32663805

ABSTRACT

Since the discovery of ferroelectricity in doped/alloyed HfO2 and ZrO2 thin film, many device engineers have been attracted to its sustainable ferroelectricity at the thickness of a few nanometer. While most of the previous studies have mainly focused on the ferroelectric properties of the thermally atomic layer deposited (THALD) Hf0.5Zr0.5O2 (HZO), the plasma-enhanced ALD (PEALD) HZO has not received much attention. In this work, a direct comparison between the two types of HZO thin films is carried out, where we found that a tradeoff exists between these two fabrication methods. While the THALD HZO was able to maintain a higher cycling endurance, the PEALD HZO showed more stable characteristics over the cycling with reduced wake-up and fatigue effects, in addition to better tolerance against breakdown under high electric field. Furthermore, the PEALD HZO could be crystallized with post deposition annealing at 350 °C, which is of great interest for the back-end-of-line compatibility with silicon fabrication processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...