Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370189

ABSTRACT

The integration of the pristine not-doped commercial poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) PH1000 with eumelanin, the brown to black kind of melanin pigment, was achieved by dissolving the melanogenic precursors 2-carboxy-5,6-dihydroxyindole (DHICA) in the PH1000 suspension. Solid state oxidative polymerization of the catecholic indole allowed obtaining the ternary blend PEDOT:PSS/eumelanin. The introduction of DHICA into PH1000 produced a noticeable increase in the conductivity of PEDOT thin films akin to that produced by dimethyl sulfoxide (DMSO) treatment, opening up novel strategies for the simultaneous integration of eumelanin polymer and conductivity enhancement of PEDOT containing coatings, as well as the long term goal of replacing PSS by DHICA eumelanin for PEDOT pairing.

2.
ACS Omega ; 4(1): 2009-2018, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459452

ABSTRACT

By pursuing the strategy of manipulating natural compounds to obtain functional materials, in this work, we report on the synthesis and characterization of a luminescent cationic iridium complex (cis-1), designed starting from the catecholic neurotransmitter dopamine, exhibiting the unusual cis arrangement of the C∧N ligands. Through an integrated experimental and theoretical approach, it was possible to delineate the optoelectronic properties of cis-1. In detail, (a) a series of absorption maxima in the range 300-400 nm was assigned to metal-to-ligand charge transfer and weak and broad absorption maxima at longer wavelengths (400-500 nm) were ascribable to spin-forbidden transitions with a mixed character; (b) there was an intense red phosphorescence with emission set in the range 580-710 nm; and (c) a highest occupied molecular orbital was mainly localized on the metal and the 2-phenylpiridine ligand and a lowest unoccupied molecular orbital was localized on the N∧N ligand, with a ΔH-L set at 2.20 eV. This investigation allowed the design of light-emitting electrochemical cell (LEEC) devices endowed with good performance. The poor literature reporting on the use of cis-iridium(III) complexes in LEECs prompted us to investigate the role played by the selected cathode and the thickness of the emitting layer, as well as the doping effect exerted by ionic liquids on the performance of the devices. All the devices exhibited a deep red emission, in some cases, quite near the pure color (devices #1, #4, and #8), expanding the panorama of the iridium-based red-to-near-infrared LEEC devices. The characteristics of the devices, such as the brightness reaching values of 162 cd/m2 for device #7, suggested that the performances of cis-1 are comparable to those of trans isomers, opening new perspective toward designing a new set of luminescent materials for optoelectronic devices.

3.
Materials (Basel) ; 12(14)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31373302

ABSTRACT

Zinc oxide nanoparticles (ZnONPs) and stearic acid are herein used for the preparation of hydrophobic coatings with good moisture barrier property on flexible plastic substrates. Fast, high throughput, mild and easy-to-run processing techniques, like airbrushing and gravure printing, are applied for thin films deposition of these materials. The results of this study indicated that the best hydrophobic coating in terms of water contact angle (115°) is obtained through a two-steps printing deposition of a ZnONPs layer followed by a stearic acid layer. All the deposition procedures proved to be effective in terms of water vapor barrier properties, reaching values of 0.89 g/m2/day, with a 45% reduction with respect to the bare substrate. These preliminary data are very encouraging in the perspective of a low cost and green approach for the realization of functional coatings for packaging applications.

4.
Front Chem ; 7: 162, 2019.
Article in English | MEDLINE | ID: mdl-30972328

ABSTRACT

Melanin denotes a variety of mammalian pigments, including the dark electrically conductive eumelanin and the reddish, sulfur-containing, pheomelanin. Organic (bio)electronics is showing increasing interests in eumelanin exploitation, e.g., for bio-interfaces, but the low conductivity of the material is limiting the development of eumelanin-based devices. Here, for the first time, we report an abrupt increase of the eumelanin electrical conductivity, revealing the highest value presented to date of 318 S/cm. This result, obtained via simple thermal annealing in vacuum of the material, designed on the base of the knowledge of the eumelanin chemical properties, also discloses the actual electronic nature of this material's conduction.

5.
Chempluschem ; 80(6): 919-927, 2015 Jun.
Article in English | MEDLINE | ID: mdl-31973255

ABSTRACT

The oxidative polymerization of 5,6-dihydroxyindoles and related hydroxyindoles at pH<3 is diverted from the usual eumelanin-forming pathway to produce mixtures of symmetric and asymmetric triazatruxenes (TATs), which could be separated and characterized for their opto-electronic properties with the aid of TD-DFT calculations. Data showed that the asymmetric isomers exhibit higher fluorescence quantum efficiencies, lower HOMO-LUMO gaps, better film homogeneity, and a more definite aggregation behavior than the symmetric counterparts, suggesting promising applications in organic electronics. The enhanced luminance exhibited by the OLED devices fabricated with blends of the synthesized TATs in poly-9-vinylcarbazole confirmed the potential of the asymmetric skeleton as new versatile platform for light-emitting materials.

6.
Chempluschem ; 80(6): 898, 2015 Jun.
Article in English | MEDLINE | ID: mdl-31973265

ABSTRACT

Invited for this month's cover is the group of Dr. Paola Manini from the University of Naples Federico II. The cover picture shows the concept underlying the design of a melanin-inspired electroluminescent material for OLED devices. This article is part of a well-structured research project aimed at imitating Nature's most enigmatic and fascinating functional pigments for the design and synthesis of innovative biomaterials for organic electronics applications. Read the full text of the article at 10.1002/cplu.201402444.

SELECTION OF CITATIONS
SEARCH DETAIL
...