Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399827

ABSTRACT

This paper presents a study on the prospects of functionalizing nanodiamonds (NDs) with aminoacetic acid to obtain high-strength composites based on an epoxy matrix. The impact of the functionalization of the ND surface with aminoacetic acid in various concentrations on the properties of the epoxy composite was assessed. The success of grafting amine onto the ND surface was confirmed by X-ray phase analysis and IR spectroscopy. The results show a significant decrease in the average size of ND particles, from 400 nm for the pristine ones to 35 nm, and the contact angle, from 27° to 22°, with an increase in the specific surface area after treatment with a 5% solution of aminoacetic acid. Reducing the average size of NDs allows them to be better distributed throughout the epoxy matrix, which, as a result of the formation of chemical interaction at the matrix-nanofiller phase interface, can significantly increase the strength of the obtained composite. The addition of NDs treated with aminoacetic acid ensures an increase in the deformation-strength properties of epoxy composites by 19-23% relative to an epoxy composite containing the pristine NDs. Moreover, the presence of functionalized NDs significantly influences the structure and thermal stability of the epoxy nanocomposite.

2.
Chemosphere ; 307(Pt 4): 136057, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995192

ABSTRACT

Hexavalent chromium (Cr(VI)), a known carcinogen, emanates from both anthropogenic and natural sources. A pilot study of the ambient Cr(VI) concentrations was conducted at the center of Aktobe which is a few kilometers away from major industrial chromium plants. Total Cr(VI) concentrations were measured in the fall and winter seasons with mean values (S.D) of 5.30 (2.16) ng/m3 and 2.26 (1.80) ng/m3, respectively. Insoluble Cr(VI) levels were 4.80 (1.96) and 2.19 (1.75) ng/m3 for the fall and winter, respectively. The total and insoluble Cr(VI) concentrations in the fall season were significantly higher than in winter, likely due to the higher rate of Cr(III) oxidation in the presence of ozone and ROS in fall compared to the rate of Cr(VI) reduction in the presence of VOCs at higher temperatures. On average, total Cr(VI) constituted 34.49% of the total Cr concentrations suggesting that the dominant valence state of Cr in the atmosphere is Cr(III). The previous reference values of exposure to Cr(VI) must be revisited by taking into account the insoluble Cr(VI) concentration since it is more prevalent in the atmosphere compared to soluble Cr(VI). The influence of the chromium plants as potential sources was not obvious in this study.


Subject(s)
Chromium , Ozone , Carcinogens , Chromium/analysis , Kazakhstan , Oxidation-Reduction , Pilot Projects , Reactive Oxygen Species
3.
Molecules ; 26(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34834122

ABSTRACT

Textile industry production processes generate one of the most highly polluted wastewaters in the world. Unfortunately, the field is also challenged by the availability of relatively cheap and highly effective technologies for wastewater purification. The application of natural zeolite as a depth filter offers an alternative and potential approach for textile wastewater treatment. The performance of a depth filter treatment system can be deeply affected by the column depth and the characteristics of the wastewater to be treated. Regrettably, the information on the potential of these filter materials for the purification of textile wastewater is still scarce. Therefore, this study investigated the potential applicability of natural zeolite in terms of column depth for the treatment of textile wastewater. From the analysis results, it was observed that the filtration efficiencies were relatively low (6.1 to 13.7%) for some parameters such as total dissolved solids, electrical conductivity, chemical oxygen demand, and sodium chloride when the wastewater samples were subjected to the 0.5 m column depth. Relatively high efficiency of 82 and 93.8% was observed from color and total suspended solids, respectively, when the wastewater samples were subjected to the 0.5 m column depth. Generally, the 0.75 m column depth achieved removal efficiencies ranging from 52.3% to 97.5%, whereas the 1 m column depth achieved removal efficiencies ranging from 86.9% to 99.4%. The highest removal efficiency was achieved with a combination of total suspended solids and 1 m column depth (99.4%). In summary, the treatment approach was observed to be highly effective for the removal of total suspended solids, with a 93.8% removal efficiency when the wastewater was subjected to the 0.5 m column depth, 97.5% for 0.75 m column depth, and 99.4% for 1 m column depth. Moreover, up to 218.233 mg of color per g of the filter material was captured. The results derived in this study provide useful information towards the potential applicability of natural zeolite in the textile wastewater treatment field.

4.
Polymers (Basel) ; 13(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34372024

ABSTRACT

The aim of this paper is to study the effect of a polyfunctional modifier oligo (resorcinol phenyl phosphate) with terminal phenyl groups and a dispersed mineral filler, diorite, on the physicochemical and deformation-strength properties of epoxy-based composites. The efficiency of using diorite as an active filler of an epoxy polymer, ensuring an increase in strength and a change in the physicochemical properties of epoxy composites, has been proven. We selected the optimal content of diorite both as a structuring additive and as a filler in the composition of the epoxy composite (0.1 and 50 parts by mass), at which diorite reinforces the epoxy composite. It has been found that the addition of diorite into the epoxy composite results in an increase in the Vicat heat resistance from 132 to 140-188 °C and increases the thermal stability of the epoxy composite, which is observed in a shift of the initial destruction temperature to higher temperatures. Furthermore, during the thermal destruction of the composite, the yield of carbonized structures increases (from 54 to 70-77% of the mass), preventing the release of volatile pyrolysis products into the gas phase, which leads to a decrease in the flammability of the epoxy composite. The efficiency of the functionalization of the diorite surface with APTES has been proven, which ensures chemical interaction at the polymer matrix/filler interface and also prevents the aggregation of diorite particles, which, in general, provides an increase in the strength characteristics of epoxy-based composite materials by 10-48%.

5.
Materials (Basel) ; 13(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050440

ABSTRACT

Despite the potential applicability of the combination between aluminium (anode) and graphite or titanium (cathode) for poultry slaughterhouse wastewater treatment, their technical and economic feasibilities have not been comprehensively captured. In this study, aluminium (anode) and graphite and titanium as cathode electrode materials were investigated and compared in terms of their performance on poultry slaughterhouse wastewater treatment. The wastewater samples collected from the Izhevsk Production Corporative (PC) poultry farm in Kazakhstan were treated using a lab-based electrochemical treatment plant and then analyzed after every 20 and 40 min of the treatment processes. Cost analysis for both electrode combinations was also performed. From the analysis results, the aluminium-graphite electrode combination achieved high removal efficiency from turbidity, color, nitrite, phosphates, and chemical oxygen demand, with removal efficiency ranging from 72% to 98% after 20 min, as well as 88% to 100% after 40 min. A similar phenomenon was also observed from the aluminium-titanium electrode combination, with high removal efficiency achieved from turbidity, color, total suspended solids, nitrite, phosphates, and chemical oxygen demand, ranging from 81% to 100% after 20 min as well as from 91% to 100% after 40 min. This means the treatment performances for both aluminium-graphite and aluminium-titanium electrode combinations were highly affected by the contact time. The general performance in terms of removal efficiency indicates that the aluminium-titanium electrode combination outperformed the aluminium-graphite electrode combination. However, the inert character of the graphite electrode led to a positive impact on the total operating cost. Therefore, the aluminium-graphite electrode combination was observed to be cheaper than the aluminium-titanium electrode combination in terms of the operating cost.

6.
Polymers (Basel) ; 12(7)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32605091

ABSTRACT

The conducted studies have proven the possibility of the directed control of operational properties of epoxy composites, due to the addition of finely-ground ocher into their composition, and the use of microwave modification of the epoxy composition. The rational content of ocher as a modifying additive (0.5 parts by mass) and a filler (75 parts by mass) of the epoxy composition has been selected, which ensures the improvement of the studied complex of physical-mechanical properties. It has been proven that ocher affects the structure formation processes and the structure of the epoxy composite, thus increasing its thermal, heat and fire resistance. During the research, the application efficiency has been proven, and the optimal parameters of the microwave modification (power-350 W; duration-30 s) of epoxy compositions filled with ocher, which increase physical-mechanical characteristics of composites, have been selected.

SELECTION OF CITATIONS
SEARCH DETAIL
...