Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(7): 5675-5689, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35332774

ABSTRACT

Stereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity. Tumor shrinkage in mouse models that are intrinsically resistant to single-agent therapy was further enhanced when treating the animals with MK-1454 in combination with a fully murinized antimouse PD-1 antibody, mDX400. These data support the development of STING agonists in combination with pembrolizumab (humanized anti-PD-1 antibody) for patients with tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 therapy.


Subject(s)
Membrane Proteins , Neoplasms , Animals , Cytokines , Humans , Immunotherapy/methods , Interferons , Mice , Neoplasms/drug therapy
4.
Nat Chem Biol ; 16(10): 1111-1119, 2020 10.
Article in English | MEDLINE | ID: mdl-32690943

ABSTRACT

Mass spectrometry-based discovery proteomics is an essential tool for the proximal readout of cellular drug action. Here, we apply a robust proteomic workflow to rapidly profile the proteomes of five lung cancer cell lines in response to more than 50 drugs. Integration of millions of quantitative protein-drug associations substantially improved the mechanism of action (MoA) deconvolution of single compounds. For example, MoA specificity increased after removal of proteins that frequently responded to drugs and the aggregation of proteome changes across cell lines resolved compound effects on proteostasis. We leveraged these findings to demonstrate efficient target identification of chemical protein degraders. Aggregating drug response across cell lines also revealed that one-quarter of compounds modulated the abundance of one of their known protein targets. Finally, the proteomic data led us to discover that inhibition of mitochondrial function is an off-target mechanism of the MAP2K1/2 inhibitor PD184352 and that the ALK inhibitor ceritinib modulates autophagy.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/metabolism , Proteomics/methods , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/physiology , Humans , Mass Spectrometry , Proteome
5.
Cell Chem Biol ; 27(1): 32-40.e3, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31653597

ABSTRACT

Proprotein convertase substilisin-like/kexin type 9 (PCSK9) is a serine protease involved in a protein-protein interaction with the low-density lipoprotein (LDL) receptor that has both human genetic and clinical validation. Blocking this protein-protein interaction prevents LDL receptor degradation and thereby decreases LDL cholesterol levels. Our pursuit of small-molecule direct binders for this difficult to drug PPI target utilized affinity selection/mass spectrometry, which identified one confirmed hit compound. An X-ray crystal structure revealed that this compound was binding in an unprecedented allosteric pocket located between the catalytic and C-terminal domain. Optimization of this initial hit, using two distinct strategies, led to compounds with high binding affinity to PCSK9. Direct target engagement was demonstrated in the cell lysate with a cellular thermal shift assay. Finally, ligand-induced protein degradation was shown with a proteasome recruiting tag attached to the high-affinity allosteric ligand for PCSK9.


Subject(s)
Drug Discovery , Drug Evaluation, Preclinical , Proprotein Convertase 9/metabolism , Proteolysis/drug effects , Serine Proteinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Humans , Ligands , Models, Molecular , Molecular Structure , Serine Proteinase Inhibitors/chemistry , Small Molecule Libraries/chemistry
6.
J Med Chem ; 60(9): 3851-3865, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28322556

ABSTRACT

We describe our optimization efforts to improve the physicochemical properties, solubility, and off-target profile of 1, an inhibitor of TarO, an early stage enzyme in the biosynthetic pathway for wall teichoic acid (WTA) synthesis. Compound 1 displayed a TarO IC50 of 125 nM in an enzyme assay and possessed very high lipophilicity (clogP = 7.1) with no measurable solubility in PBS buffer. Structure-activity relationship (SAR) studies resulted in a series of compounds with improved lipophilic ligand efficiency (LLE) consistent with the reduction of clogP. From these efforts, analog 9 was selected for our initial in vivo study, which in combination with subefficacious dose of imipenem (IPM) robustly lowered the bacterial burden in a neutropenic Staphylococci murine infection model. Concurrent with our in vivo optimization effort using 9, we further improved LLE as exemplified by a much more druglike analog 26.


Subject(s)
Lipids/chemistry , Small Molecule Libraries , Animals , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Solubility , Structure-Activity Relationship
8.
ACS Med Chem Lett ; 8(1): 49-54, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28105274

ABSTRACT

Type 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects. Herein we describe the design, synthesis, and evaluation of a novel spirocyclic GPR120 agonist series, which culminated in the discovery of potent and selective agonist 14. Furthermore, compound 14 was evaluated in vivo and demonstrated acute glucose lowering in an oral glucose tolerance test (oGTT), as well as improvements in homeostatic measurement assessment of insulin resistance (HOMA-IR; a surrogate marker for insulin sensitization) and an increase in glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp in diet-induced obese (DIO) mice.

9.
ACS Med Chem Lett ; 8(1): 128-132, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28105288

ABSTRACT

Herein we report the discovery and hit-to-lead optimization of a series of spirocyclic piperidine aldosterone synthase (CYP11B2) inhibitors. Compounds from this series display potent CYP11B2 inhibition, good selectivity versus related CYP enzymes, and lead-like physical and pharmacokinetic properties.

10.
Bioorg Med Chem Lett ; 26(23): 5724-5728, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27815121

ABSTRACT

The transformation of an aryloxybutanoic acid ultra high-throughput screening (uHTS) hit into a potent and selective series of G-protein coupled receptor 120 (GPR120) agonists is reported. uHTS hit 1 demonstrated an excellent rodent pharmacokinetic profile and selectivity over the related fatty acid receptor GPR40, but only modest GPR120 potency. Optimization of the "left-hand" aryl group led to compound 6, which demonstrated a GPR120 mechanism-based pharmacodynamic effect in a mouse oral glucose tolerance test (oGTT). Further optimization gave rise to the benzofuran propanoic acid series (exemplified by compound 37), which demonstrated acute mechanism-based pharmacodynamic effects. The combination of in vivo efficacy and attractive rodent pharmacodynamic profiles suggests compounds generated from this series may afford attractive candidates for the treatment of Type 2 diabetes.


Subject(s)
Benzofurans/chemistry , Benzofurans/pharmacology , Propionates/chemistry , Propionates/pharmacology , Receptors, G-Protein-Coupled/agonists , Animals , Benzofurans/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Propionates/blood , Receptors, G-Protein-Coupled/metabolism
11.
Bioorg Med Chem Lett ; 26(17): 4250-5, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476420

ABSTRACT

IRAK4 has been identified as potential therapeutic target for inflammatory and autoimmune diseases. Herein we report the identification and initial SAR studies of a new class of pyrazole containing IRAK4 inhibitors designed to expand chemical diversity and improve off target activity of a previously identified series. These compounds maintain potent IRAK4 activity and desirable ligand efficiency. Rat clearance and a variety of off target activities were also examined, resulting in encouraging data with tractable SAR.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Half-Life , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Rats , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 25(19): 4143-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26303893

ABSTRACT

A novel, potent series of glucagon receptor antagonists (GRAs) was discovered. These indazole- and indole-based compounds were designed on an earlier pyrazole-based GRA lead MK-0893. Structure-activity relationship (SAR) studies were focused on the C3 and C6 positions of the indazole core, as well as the benzylic position on the N-1 of indazole. Multiple potent GRAs were identified with excellent in vitro profiles and good pharmacokinetics in rat. Among them, GRA 16d was found to be orally active in blunting glucagon induced glucose excursion in an acute glucagon challenge model in glucagon receptor humanized (hGCGR) mice at 1, 3 and 10mg/kg (mpk), and significantly lowered acute glucose levels in hGCGR ob/ob mice at 3 mpk dose.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptors, Glucagon/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Humans , Mice , Mice, Obese , Molecular Structure , Rats , Structure-Activity Relationship
13.
ACS Med Chem Lett ; 6(8): 942-7, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26288698

ABSTRACT

We report the identification and synthesis of a series of aminopyrimidin-4-one IRAK4 inhibitors. Through high throughput screening, an aminopyrimidine hit was identified and modified via structure enabled design to generate a new, potent, and kinase selective pyrimidin-4-one chemotype. This chemotype is exemplified by compound 16, which has potent IRAK4 inhibition activity (IC50 = 27 nM) and excellent kinase selectivity (>100-fold against 99% of 111 tested kinases), and compound 31, which displays potent IRAK4 activity (IC50 = 93 nM) and good rat bioavailability (F = 42%).

14.
ACS Med Chem Lett ; 6(6): 677-82, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26101573

ABSTRACT

IRAK4 is a critical upstream kinase in the IL-1R/TLR signaling pathway. Inhibition of IRAK4 is hypothesized to be beneficial in the treatment of autoimmune related disorders. A screening campaign identified a pyrazole class of IRAK4 inhibitors that were determined by X-ray crystallography to exhibit an unusual binding mode. SAR efforts focused on the identification of a potent and selective inhibitor with good aqueous solubility and rodent pharmacokinetics. Pyrazole C-3 piperidines were well tolerated, with N-sulfonyl analogues generally having good rodent oral exposure but poor solubility. N-Alkyl piperidines exhibited excellent solubility and reduced exposure. Pyrazoles possessing N-1 pyridine and fluorophenyl substituents were among the most active. Piperazine 32 was a potent enzyme inhibitor with good cellular activity. Compound 32 reduced the in vivo production of proinflammatory cytokines and was orally efficacious in a mouse antibody induced arthritis disease model of inflammation.

15.
Sci Transl Med ; 4(148): 148ra115, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22914621

ABSTRACT

Nicotinic acid (niacin) induces beneficial changes in serum lipoproteins and has been associated with beneficial cardiovascular effects. Niacin reduces low-density lipoprotein, increases high-density lipoprotein, and decreases triglycerides. It is well established that activation of the seven-transmembrane G(i)-coupled receptor GPR109A on Langerhans cells results in release of prostaglandin D2, which mediates the well-known flushing side effect of niacin. Niacin activation of GPR109A on adipocytes also mediates the transient reduction of plasma free fatty acid (FFA) levels characteristic of niacin, which has been long hypothesized to be the mechanism underlying the changes in the serum lipid profile. We tested this "FFA hypothesis" and the hypothesis that niacin lipid efficacy is mediated via GPR109A by dosing mice lacking GPR109A with niacin and testing two novel, full GPR109A agonists, MK-1903 and SCH900271, in three human clinical trials. In mice, the absence of GPR109A had no effect on niacin's lipid efficacy despite complete abrogation of the anti-lipolytic effect. Both MK-1903 and SCH900271 lowered FFAs acutely in humans; however, neither had the expected effects on serum lipids. Chronic FFA suppression was not sustainable via GPR109A agonism with niacin, MK-1903, or SCH900271. We conclude that the GPR109A receptor does not mediate niacin's lipid efficacy, challenging the long-standing FFA hypothesis.


Subject(s)
Fatty Acids/metabolism , Niacin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/metabolism , Animals , Dose-Response Relationship, Drug , Fatty Acids/blood , Humans , Lipolysis/drug effects , Lipoproteins/blood , Male , Mice , Mice, Inbred C57BL , Niacin/administration & dosage , Pyrazoles/pharmacology , Receptors, G-Protein-Coupled/agonists
16.
J Med Chem ; 55(13): 6137-48, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22708876

ABSTRACT

A potent, selective glucagon receptor antagonist 9m, N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-ß-alanine, was discovered by optimization of a previously identified lead. Compound 9m is a reversible and competitive antagonist with high binding affinity (IC(50) of 6.6 nM) and functional cAMP activity (IC(50) of 15.7 nM). It is selective for glucagon receptor relative to other family B GPCRs, showing IC(50) values of 1020 nM for GIPR, 9200 nM for PAC1, and >10000 nM for GLP-1R, VPAC1, and VPAC2. Compound 9m blunted glucagon-induced glucose elevation in hGCGR mice and rhesus monkeys. It also lowered ambient glucose levels in both acute and chronic mouse models: in hGCGR ob/ob mice it reduced glucose (AUC 0-6 h) by 32% and 39% at 3 and 10 mpk single doses, respectively. In hGCGR mice on a high fat diet, compound 9m at 3, and 10 mpk po in feed lowered blood glucose levels by 89% and 94% at day 10, respectively, relative to the difference between the vehicle control and lean hGCGR mice. On the basis of its favorable biological and DMPK properties, compound 9m (MK-0893) was selected for further preclinical and clinical evaluations.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucagon/metabolism , Pyrazoles/pharmacology , Receptors, Glucagon/antagonists & inhibitors , beta-Alanine/analogs & derivatives , Animals , Area Under Curve , CHO Cells , Cricetinae , Cricetulus , Diet, High-Fat/adverse effects , Disease Models, Animal , Dogs , Glucagon-Like Peptide-1 Receptor , Humans , Inhibitory Concentration 50 , Macaca mulatta , Mice , Mice, Obese , Microsomes, Liver/metabolism , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Rats , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/antagonists & inhibitors , Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors , Receptors, Vasoactive Intestinal Polypeptide, Type I/antagonists & inhibitors , beta-Alanine/chemistry , beta-Alanine/pharmacology , beta-Alanine/therapeutic use
17.
J Med Chem ; 55(8): 3644-66, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22435740

ABSTRACT

G-protein coupled receptor (GPCR) GPR109a is a molecular target for nicotinic acid and is expressed in adipocytes, spleen, and immune cells. Nicotinic acid has long been used for the treatment of dyslipidemia due to its capacity to positively affect serum lipids to a greater extent than other currently marketed drugs. We report a series of tricyclic pyrazole carboxylic acids that are potent and selective agonists of GPR109a. Compound R,R-19a (MK-1903) was advanced through preclinical studies, was well tolerated, and presented no apparent safety concerns. Compound R,R-19a was advanced into a phase 1 clinical trial and produced a robust decrease in plasma free fatty acids. On the basis of these results, R,R-19a was evaluated in a phase 2 study in humans. Because R,R-19a produced only a weak effect on serum lipids as compared with niacin, we conclude that the beneficial effects of niacin are most likely the result of an undefined GPR109a independent pathway.


Subject(s)
Fatty Acids, Nonesterified/blood , Pyrazoles/therapeutic use , Receptors, G-Protein-Coupled/agonists , Animals , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/therapeutic use , Male , Niacin/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Receptors, G-Protein-Coupled/drug effects , Receptors, Nicotinic/drug effects , Stereoisomerism , Vasodilator Agents/pharmacology
19.
20.
Bioorg Med Chem Lett ; 22(1): 658-65, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22079761

ABSTRACT

Novel prolylcarboxypeptidase (PrCP) inhibitors with nanomolar IC(50) values were prepared by replacing the previously described dichlorobenzimidazole-substituted pyrrolidine amides with a variety of substituted benzylamine amides. In contrast to prior series, the compounds demonstrated minimal inhibition shift in whole serum and minimal recognition by P-glycoprotein (P-gp) efflux transporters. The compounds were also cell permeable and demonstrated in vivo brain exposure. The in vivo effect of compound (S)-6e on weight loss in an established diet-induced obesity (eDIO) mouse model was studied.


Subject(s)
Benzimidazoles/pharmacology , Brain/metabolism , Carboxypeptidases/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Amides/chemistry , Animals , Biological Transport , Body Weight , Brain/drug effects , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Mice , Models, Chemical , Obesity/drug therapy , Pyrrolidines/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...