Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612068

ABSTRACT

The goal of this paper is to improve the mechanical strength-to-weight ratios of metal cubic lattice structures using unit cells with fillet shapes inspired by triply periodic minimal surfaces (TPMS). The lattice structures here presented were fabricated from AA6082 aluminum alloy using lost-PLA processing. Static and dynamic flat and wedge compression tests were conducted on samples with varying fillet shapes and fill factors. Finite element method simulations followed the static tests to compare numerical predictions with experimental outcomes, revealing a good agreement. The TPSM-type fillet shape induces a triaxial stress state that significantly improves the mechanical strength-to-weight ratio compared to fillet radius-free lattices, which was also confirmed by analytical considerations. Dynamic tests exhibited high resistance to flat impacts, while wedge impacts, involving a high concentrated-load, brought out an increased sensitivity to strain rates with a short plastic deformation followed by abrupt fragmentation, indicating a shift towards brittle behavior.

2.
Materials (Basel) ; 16(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005007

ABSTRACT

Cellular solids are materials made up of cells with solid edges or faces that are piled together to fit a certain space. These materials are already present in nature and have already been utilized in the past. Some examples are wood, cork, sponge and coral. New cellular solids replicating natural ones have been manufactured, such as honeycomb materials and foams, which have a variety of applications because of their special characteristics such as being lightweight, insulation, cushioning and energy absorption derived from the cellular structure. Cellular solids have interesting thermal, physical and mechanical properties in comparison with bulk solids: density, thermal conductivity, Young's modulus and compressive strength. This huge extension of properties allows for applications that cannot easily be extended to fully dense solids and offers enormous potential for engineering creativity. Their Low densities allow lightweight and rigid components to be designed, such as sandwich panels and large portable and floating structures of all types. Their low thermal conductivity enables cheap and reliable thermal insulation, which can only be improved by expensive vacuum-based methods. Their low stiffness makes the foams ideal for a wide range of applications, such as shock absorbers. Low strengths and large compressive strains make the foams attractive for energy-absorbing applications. In this work, their main properties, applications (real and potential) and recent developments are presented, summarized and discussed.

3.
Materials (Basel) ; 16(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570166

ABSTRACT

A comparison of the compressive behavior of Al honeycomb under pure normal stress and combined normal-shear stress was analyzed in this work. The typical working stress of honeycomb is a compressive load along the direction parallel to the axis of the cells. However, the component can also undergo shear stresses during operation, which can cause premature failure. This work analyzes the mechanical behavior in compression by normal stress (0°) and in conditions of combined normal-shear stress (at 15° and 25°) using a special pair of wedges. The samples were obtained from a 3000 series Al alloy sandwich panel and tested according to the ASTM C365/C365M-22 standard. The different deformation modes of the cells in the combined compression were examined for three angles (0, 15°, and 25°). A theoretical model of combined compression was used to derive the normal and tangential components starting from the total stress-strain curves. A compression curve analysis was conducted at different angles θ, allowing for considerations regarding changes in strength, absorbed energy, and deformations. Overall, as the load application angle increased, both the shear resistance of the honeycomb and its tangential displacement up to densification increased, which is the opposite of what occurs in normal behavior. The cell rotation angle was calculated as the load angle varied. The rotation angle of the cell increased with the displacement of the crosshead and the application angle of the force.

4.
Materials (Basel) ; 13(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326510

ABSTRACT

Shape memory alloys (SMAs) show a particular behavior that is the ability to recuperate the original shape while heating above specific critical temperatures (shape memory effect) or to withstand high deformations recoverable while unloading (pseudoelasticity). In many cases the SMAs play the actuator's role. Starting from the origin of the shape memory effect, the mechanical properties of these alloys are illustrated. This paper presents a review of SMAs applications in the aerospace field with particular emphasis on morphing wings (experimental and modeling), tailoring of the orientation and inlet geometry of many propulsion system, variable geometry chevron for thrust and noise optimization, and more in general reduction of power consumption. Space applications are described too: to isolate the micro-vibrations, for low-shock release devices and self-deployable solar sails. Novel configurations and devices are highlighted too.

SELECTION OF CITATIONS
SEARCH DETAIL
...