Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Dis ; 105(8): 2177-2188, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33258425

ABSTRACT

Cassava plays a key role in ensuring food security and generating income for smallholder farmers throughout Central Africa, particularly in the Democratic Republic of Congo (DRC). This status is threatened, however, by cassava brown streak disease (CBSD), which has expanded its incidence and range in eastern DRC. The study described here comprises the first extensive assessment of temporal change in the occurrence of CBSD and its causal viruses in DRC, based on surveys conducted during 2016 and 2018. Cassava fields were inspected in Ituri, Nord-Kivu, Sud-Kivu, Tanganyika, and Haut-Katanga provinces within eastern DRC to record foliar incidence and severity of CBSD. Leaf samples were collected for virus detection and species-level identification. New occurrences of CBSD, confirmed by virus diagnostic tests, were recorded in two provinces (Haut-Katanga and Sud-Kivu) and nine previously unaffected territories, covering an area of >62,000 km2, and at up to 900 km from locations of previously published reports of CBSD in DRC. Overall, average CBSD incidence within fields was 13.2% in 2016 and 16.1% in 2018. In the new spread zone of Haut-Katanga, incidence increased from 1.7 to 15.9%. CBSD is now present in provinces covering 321,000 km2, which is approximately 14% of the total area of DRC. This represents a major expansion of the CBSD epidemic, which was only recorded from one province (Nord-Kivu) in 2012. Both Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus were detected in Ituri, Nord-Kivu, and Sud-Kivu, but only CBSV was detected in Haut-Katanga. Overall, these results confirm the increasing threat that CBSD poses to cassava production in DRC and describe an important expansion in the African pandemic of CBSD.


Subject(s)
Manihot , Africa, Central , Democratic Republic of the Congo/epidemiology , Plant Diseases , Plant Leaves
2.
Virus Res ; 159(2): 161-70, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21549776

ABSTRACT

The rapid geographical expansion of the cassava mosaic disease (CMD) pandemic, caused by cassava mosaic geminiviruses, has devastated cassava crops in 12 countries of East and Central Africa since the late 1980s. Region-level surveys have revealed a continuing pattern of annual spread westward and southward along a contiguous 'front'. More recently, outbreaks of cassava brown streak disease (CBSD) were reported from Uganda and other parts of East Africa that had been hitherto unaffected by the disease. Recent survey data reveal several significant contrasts between the regional epidemiology of these two pandemics: (i) severe CMD radiates out from an initial centre of origin, whilst CBSD seems to be spreading from independent 'hot-spots'; (ii) the severe CMD pandemic has arisen from recombination and synergy between virus species, whilst the CBSD pandemic seems to be a 'new encounter' situation between host and pathogen; (iii) CMD pandemic spread has been tightly linked with the appearance of super-abundant Bemisia tabaci whitefly vector populations, in contrast to CBSD, where outbreaks have occurred 3-12 years after whitefly population increases; (iv) the CMGs causing CMD are transmitted in a persistent manner, whilst the two cassava brown streak viruses appear to be semi-persistently transmitted; and (v) different patterns of symptom expression mean that phytosanitary measures could be implemented easily for CMD but have limited effectiveness, whereas similar measures are difficult to apply for CBSD but are potentially very effective. An important similarity between the pandemics is that the viruses occurring in pandemic-affected areas are also found elsewhere, indicating that contrary to earlier published conclusions, the viruses per se are unlikely to be the key factors driving the two pandemics. A diagrammatic representation illustrates the temporal relationship between B. tabaci abundance and changing incidences of both CMD and CBSD in the Great Lakes region. This emphasizes the pivotal role played by the vector in both pandemics and the urgent need to identify effective and sustainable strategies for controlling whiteflies on cassava.


Subject(s)
Begomovirus/pathogenicity , Manihot/virology , Plant Diseases/virology , Potyviridae/pathogenicity , Africa/epidemiology , Begomovirus/isolation & purification , Disease Transmission, Infectious , Geography , Pandemics , Potyviridae/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...