Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Hum Behav ; 8(4): 679-691, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216691

ABSTRACT

Normative and descriptive models have long vied to explain and predict human risky choices, such as those between goods or gambles. A recent study reported the discovery of a new, more accurate model of human decision-making by training neural networks on a new online large-scale dataset, choices13k. Here we systematically analyse the relationships between several models and datasets using machine-learning methods and find evidence for dataset bias. Because participants' choices in stochastically dominated gambles were consistently skewed towards equipreference in the choices13k dataset, we hypothesized that this reflected increased decision noise. Indeed, a probabilistic generative model adding structured decision noise to a neural network trained on data from a laboratory study transferred best, that is, outperformed all models apart from those trained on choices13k. We conclude that a careful combination of theory and data analysis is still required to understand the complex interactions of machine-learning models and data of human risky choices.


Subject(s)
Decision Making , Machine Learning , Humans , Neural Networks, Computer , Risk-Taking , Datasets as Topic , Models, Psychological , Choice Behavior , Adult , Bias
2.
Cogn Neuropsychol ; 38(7-8): 440-454, 2021.
Article in English | MEDLINE | ID: mdl-34877918

ABSTRACT

The success of visuomotor interactions in everyday activities such as grasping or sliding a cup is inescapably governed by the laws of physics. Research on intuitive physics has predominantly investigated reasoning about objects' behaviour involving binary forced choice responses. We investigated how the type of visuomotor response influences participants' beliefs about physical quantities and their lawful relationship implicit in their active behaviour. Participants propelled pucks towards targets positioned at different distances. Analysis with a probabilistic model of interactions showed that subjects adopted the non-linear control prescribed by Newtonian physics when sliding real pucks in a virtual environment even in the absence of visual feedback. However, they used a linear heuristic when viewing the scene on a monitor and interactions were implemented through key presses. These results support the notion of probabilistic internal physics models but additionally suggest that humans can take advantage of embodied, sensorimotor, multimodal representations in physical scenarios.


Subject(s)
Hand Strength , Physics , Humans
3.
PLoS Comput Biol ; 16(10): e1007730, 2020 10.
Article in English | MEDLINE | ID: mdl-33075051

ABSTRACT

While interacting with objects during every-day activities, e.g. when sliding a glass on a counter top, people obtain constant feedback whether they are acting in accordance with physical laws. However, classical research on intuitive physics has revealed that people's judgements systematically deviate from predictions of Newtonian physics. Recent research has explained at least some of these deviations not as consequence of misconceptions about physics but instead as the consequence of the probabilistic interaction between inevitable perceptual uncertainties and prior beliefs. How intuitive physical reasoning relates to visuomotor actions is much less known. Here, we present an experiment in which participants had to slide pucks under the influence of naturalistic friction in a simulated virtual environment. The puck was controlled by the duration of a button press, which needed to be scaled linearly with the puck's mass and with the square-root of initial distance to reach a target. Over four phases of the experiment, uncertainties were manipulated by altering the availability of sensory feedback and providing different degrees of knowledge about the physical properties of pucks. A hierarchical Bayesian model of the visuomotor interaction task incorporating perceptual uncertainty and press-time variability found substantial evidence that subjects adjusted their button-presses so that the sliding was in accordance with Newtonian physics. After observing collisions between pucks, which were analyzed with a hierarchical Bayesian model of the perceptual observation task, subjects transferred the relative masses inferred perceptually to adjust subsequent sliding actions. Crucial in the modeling was the inclusion of a cost function, which quantitatively captures participants' implicit sensitivity to errors due to their motor variability. Taken together, in the present experiment we find evidence that our participants transferred their intuitive physical reasoning to a subsequent visuomotor control task consistent with Newtonian physics and weighed potential outcomes with a cost functions based on their knowledge about their own variability.


Subject(s)
Heuristics/physiology , Learning/physiology , Models, Psychological , Physics , Psychomotor Performance/physiology , Adolescent , Adult , Bayes Theorem , Computational Biology , Female , Humans , Knowledge , Male , Uncertainty , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...