Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 117(1): 22-30, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37244624

ABSTRACT

PURPOSE: There is increasing concern about rising carbon dioxide (CO2) emissions and their hazardous effect on human health. This study quantifies the energy utilization of proton therapy, assesses the corresponding carbon footprint, and discusses possible offsetting strategies toward carbon-neutral health care operations. METHODS AND MATERIALS: Patients treated between July 2020 and June 2021 using the Mevion proton system were evaluated. Current measurements were converted to kilowatts of power consumption. Patients were reviewed for disease, dose, number of fractions, and duration of beam. The Environmental Protection Agency calculator was used to convert power consumption to tons of CO2 equivalent (CO2e) for scope-based carbon footprint accounting. RESULTS: There were 185 patients treated and a total of 5176 fractions delivered (average, 28). Power consumption was 55.8 kW in standby/night mode and 64.4 kW during BeamOn, for an annual total of 490 MWh. BeamOn time was 149.6 hours, and BeamOn consumption accounted for 2% of the machine total. Power consumption was 52 kWh per patient (breast, highest at 140 kWh; prostate, lowest at 28 kWh). Annual power consumption of the administrative areas was approximately 96 MWh, for a program total of 586 MWh. The carbon footprint for BeamOn time was 4.17 metric tons of CO2e, or 23 kg per patient course (breast cancer, 60 kg; prostate, 12 kg). The annual carbon footprint for the machine was 212.2 tons CO2e, and for the proton program, 253.7 tons CO2e, with an attributed footprint of 1372 kg CO2e per patient. The corresponding CO2e offset for the program could be 4192 new trees planted and grown for 10 years (23 trees per patient). CONCLUSIONS: The carbon footprint varied by disease treated. On average, the carbon footprint was 23 kg of CO2e per patient and 253.7 tons of CO2e for the proton program. There are a number of reduction, mitigation, and offset strategies possible for radiation oncologists that should be explored, such as waste minimization, less treatment commuting, efficient energy use, and renewable electricity power use.


Subject(s)
Proton Therapy , United States , Male , Humans , Protons , Carbon Dioxide , Carbon Footprint , Breast
2.
Waste Manag Res ; 32(6): 500-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24855225

ABSTRACT

Waste management in construction is critical for the sustainable treatment of building-related construction and demolition (C&D) waste materials, and recycling of these wastes has been considered as one of the best strategies in minimization of C&D debris. However, recycling of C&D materials may not always be a feasible strategy for every waste type and therefore recycling and other waste treatment strategies should be supported by robust decision-making models. With the aim of assessing the net carbon, energy, and water footprints of C&D recycling and other waste management alternatives, a comprehensive economic input-output-based hybrid life-cycle assessment model is developed by tracing all of the economy-wide supply-chain impacts of three waste management strategies: recycling, landfilling, and incineration. Analysis results showed that only the recycling of construction materials provided positive environmental footprint savings in terms of carbon, energy, and water footprints. Incineration is a better option as a secondary strategy after recycling for water and energy footprint categories, whereas landfilling is found to be as slightly better strategy when carbon footprint is considered as the main focus of comparison. In terms of construction materials' environmental footprint, nonferrous metals are found to have a significant environmental footprint reduction potential if recycled.


Subject(s)
Construction Materials , Environment , Models, Theoretical , Waste Management/methods , Carbon/analysis , Construction Industry/methods , Greenhouse Effect , Incineration , Paper , Plastics , Recycling/methods , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal Facilities , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...