Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 185, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004763

ABSTRACT

BACKGROUND: We recently identified ~ 10,000 correlated regions of systemic interindividual epigenetic variation (CoRSIVs) in the human genome. These methylation variants are amenable to population studies, as DNA methylation measurements in blood provide information on epigenetic regulation throughout the body. Moreover, establishment of DNA methylation at human CoRSIVs is labile to periconceptional influences such as nutrition. Here, we analyze publicly available whole-genome bisulfite sequencing data on multiple tissues of each of two Holstein cows to determine whether CoRSIVs exist in cattle. RESULTS: Focusing on genomic blocks with ≥ 5 CpGs and a systemic interindividual variation index of at least 20, our approach identifies 217 cattle CoRSIVs, a subset of which we independently validate by bisulfite pyrosequencing. Similar to human CoRSIVs, those in cattle are strongly associated with genetic variation. Also as in humans, we show that establishment of DNA methylation at cattle CoRSIVs is particularly sensitive to early embryonic environment, in the context of embryo culture during assisted reproduction. CONCLUSIONS: Our data indicate that CoRSIVs exist in cattle, as in humans, suggesting these systemic epigenetic variants may be common to mammals in general. To the extent that individual epigenetic variation at cattle CoRSIVs affects phenotypic outcomes, assessment of CoRSIV methylation at birth may become an important tool for optimizing agriculturally important traits. Moreover, adjusting embryo culture conditions during assisted reproduction may provide opportunities to tailor agricultural outcomes by engineering CoRSIV methylation profiles.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Cattle , Animals , Humans , CpG Islands , Genetic Variation
2.
Nutrients ; 15(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37686719

ABSTRACT

This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.


Subject(s)
Ceramides , Dietary Approaches To Stop Hypertension , Aged , Humans , Choline , Lecithins , Meat , Sphingomyelins
3.
J Dairy Sci ; 104(9): 9948-9955, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34176629

ABSTRACT

In rodents and humans, the gut bacteria-derived metabolite trimethylamine N-oxide (TMAO) has been implicated in the progression of cardiovascular disease, chronic kidney disease, fatty liver, and insulin resistance; however, the effects of TMAO on dairy cattle health and milk production have not been defined. We aimed to determine whether intravenous TMAO infusion modifies measures of liver health, glucose tolerance, and milk production in early-lactation cows. Eight early-lactation Holstein cows (30.4 ± 6.41 d in milk; 2.88 ± 0.83 lactations) were enrolled in a study with a replicated 4 × 4 Latin square design. Cows were intravenously infused TMAO at 0 (control), 20, 40, or 60 g/d for 6 d. Washout periods lasted 9 d. Intravenous glucose tolerance tests (GTT) occurred on d 5. Blood was collected daily. Milk was collected on d -1, 0, 5, and 6. Urine was collected on d -1 and 6. Circulating metabolites, milk components, and TMAO concentrations in milk, urine, and plasma were quantified. Data were analyzed using a mixed model that included the fixed effects of treatment. Concentrations of TMAO in plasma, milk, and urine increased linearly with increasing dose. Dry matter intake and milk production were not modified by treatment. Daily plasma triacylglycerol, fatty acid (FA), and glucose concentrations were not modified. Serum albumin, total protein, globulin, total bilirubin, direct bilirubin, aspartate aminotransferase, γ-glutamyl transferase, and glutamate dehydrogenase concentrations were also not modified by treatment. Serum GTT glucose, FA, and insulin concentrations were not modified by treatment. Plasma total, reduced, and oxidized glutathione concentrations were also not modified by treatment. We conclude that a 6-d intravenous infusion of TMAO does not influence measures of liver health, glucose tolerance, or milk production in early-lactation dairy cows.


Subject(s)
Diet , Milk , Animals , Cattle , Diet/veterinary , Female , Glucose , Infusions, Intravenous/veterinary , Lactation , Liver , Methylamines
SELECTION OF CITATIONS
SEARCH DETAIL
...