Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38722278

ABSTRACT

Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Membrane Proteins , Ubiquitin-Protein Ligases , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA-Binding Proteins , Endoplasmic Reticulum/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , HeLa Cells , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Domains , Protein Folding , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
2.
Cells ; 12(23)2023 11 30.
Article in English | MEDLINE | ID: mdl-38067172

ABSTRACT

The ubiquitin E3 ligase UBE3C promotes the proteasomal degradation of cytosolic proteins and endoplasmic reticulum (ER) membrane proteins. UBE3C is proposed to function downstream of the RNF185/MBRL ER-associated degradation (ERAD) branch, contributing to the ERAD of select membrane proteins. Here, we report that UBE3C facilitates the ERAD of misfolded CFTR, even in the absence of both RNF185 and its functional ortholog RNF5 (RNF5/185). Unlike RNF5/185, UBE3C had a limited impact on the ubiquitination of misfolded CFTR. UBE3C knockdown (KD) resulted in an additional increase in the functional ∆F508-CFTR channels on the plasma membrane when combined with the RNF5/185 ablation, particularly in the presence of clinically used CFTR modulators. Interestingly, although UBE3C KD failed to attenuate the ERAD of insig-1, it reduced the ERAD of misfolded ∆Y490-ABCB1 and increased cell surface expression. UBE3C KD also stabilized the mature form of ∆F508-CFTR and increased the cell surface level of T70-CFTR, a class VI CFTR mutant. These results suggest that UBE3C plays a vital role in the ERAD of misfolded CFTR and ABCB1, even within the RNF5/185-independent ERAD pathway, and it may also be involved in maintaining the peripheral quality control of CFTR.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Ubiquitin-Protein Ligases , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Endoplasmic Reticulum-Associated Degradation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Humans , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...