Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-509852

ABSTRACT

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21264054

ABSTRACT

Patients on dialysis are at risk of severe course of SARS-CoV-2 infection. Understanding the neutralizing activity and coverage of SARS-CoV-2 variants of vaccine-elicited antibodies is required to guide prophylactic and therapeutic COVID-19 interventions in this frail population. By analyzing plasma samples from 130 hemodialysis and 13 peritoneal dialysis patients after two doses of BNT162b2 or mRNA-1273 vaccines, we found that 35% of the patients had low-level or undetectable IgG antibodies to SARS-CoV-2 Spike (S). Neutralizing antibodies against the vaccine-matched SARS-CoV-2 and Delta variant were low or undetectable in 49% and 77% of patients, respectively, and were further reduced against other emerging variants. The fraction of non-responding patients was higher in SARS-CoV-2-naive hemodialysis patients immunized with BNT162b2 (66%) than those immunized with mRNA-1273 (23%). The reduced neutralizing activity correlated with low antibody avidity. Patients followed up to 7 months after vaccination showed a rapid decay of the antibody response with an average 21- and 10-fold reduction of neutralizing antibodies to vaccine-matched SARS-CoV-2 and Delta variant, which increased the fraction of non-responders to 84% and 90%, respectively. These data indicate that dialysis patients should be prioritized for additional vaccination boosts. Nevertheless, their antibody response to SARS-CoV-2 must be continuously monitored to adopt the best prophylactic and therapeutic strategy.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-436642

ABSTRACT

The identification of CD4+ T cell epitopes is essential for the design of effective vaccines capable of inducing neutralizing antibodies and long-term immunity. Here we demonstrate in COVID-19 patients a robust CD4+ T cell response to naturally processed SARS-CoV-2 Spike and Nucleoprotein, including effector, helper and memory T cells. By characterizing 2,943 Spike-reactive T cell clones, we found that 34% of the clones and 93% of the patients recognized a conserved immunodominant region encompassing residues S346-365 in the RBD and comprising three nested HLA-DR and HLA-DP restricted epitopes. By using pre- and post-COVID-19 samples and Spike proteins from alpha and beta coronaviruses, we provide in vivo evidence of cross-reactive T cell responses targeting multiple sites in the SARS-CoV-2 Spike protein. The possibility of leveraging immunodominant and cross-reactive T helper epitopes is instrumental for vaccination strategies that can be rapidly adapted to counteract emerging SARS-CoV-2 variants.

SELECTION OF CITATIONS
SEARCH DETAIL
...