Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 20(8): 4053-4067, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34251208

ABSTRACT

While a number of methods are available for analyzing lipids, unbiased untargeted lipidomics with high coverage remains a challenge. In this work, we report a study of isotope-standard-assisted liquid chromatography mass spectrometry lipidomics of serum for biomarker discovery. We focus on Parkinson's disease (PD), a neurodegenerative disorder that often progresses to dementia. Currently, the diagnosis of PD is purely clinical and there is limited ability to predict which PD patients will transition to dementia, hampering early interventions. We studied serum samples from healthy controls and PD patients with no clinical signs of dementia. A follow-up 3 years later revealed that a subset of PD patients had transitioned to dementia. Using the baseline samples, we constructed two biomarker panels to differentiate (1) PD patients from healthy controls and (2) PD patients that remained cognitively stable from PD patients with incipient dementia (diagnosed 3 years after sample collection). The proposed biomarker panels displayed excellent performance and may be useful for detecting prodromal PD dementia, allowing early interventions and prevention efforts. The biochemistry of significantly changed lipids is also discussed within the current knowledge of neurological pathologies. Our results are promising and future work using a larger cohort of samples is warranted.


Subject(s)
Dementia , Neurodegenerative Diseases , Parkinson Disease , Biomarkers , Dementia/diagnosis , Humans , Lipidomics , Parkinson Disease/diagnosis
2.
Plant Biotechnol J ; 15(4): 497-509, 2017 04.
Article in English | MEDLINE | ID: mdl-27734577

ABSTRACT

Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl-CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl-CoA pool through branched-chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG-rich D. tertiolecta mutant from targeted screening. Herein, a three-step α loop-integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl-CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market.


Subject(s)
Acetyl Coenzyme A/metabolism , Amino Acids/metabolism , Biofuels , Microalgae/metabolism , Triglycerides/metabolism
3.
Anal Chem ; 87(22): 11468-74, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26482335

ABSTRACT

Nanoflow liquid chromatography mass spectrometry (nLC-MS) is frequently used in the proteomics field to analyze a small amount of protein and peptide samples. However, this technique is currently not widespread in the metabolomics field. We report a detailed investigation on the development of an nLC-MS system equipped with a trap column for high-performance chemical isotope labeling (CIL) metabolomic profiling with deep coverage and high sensitivity. Experimental conditions were optimized for profiling the amine/phenol submetabolome with (13)C-/(12)C-dansylation labeling. Comparison of analytical results from nLC-MS and microbore LC-MS (mLC-MS) was made in the analysis of metabolite standards and labeled human urine and sweat samples. It is shown that, with a 5-µL loop injection, 7 labeled amino acid standards could be detected with S/N ranging from 7 to 150 by nLC-MS with an injection of 5 nM solution containing a total of 25 fmol labeled analyte. For urine metabolome profiling where the sample amount was not limited, nLC-MS detected 13% more metabolites than mLC-MS under optimal conditions (i.e., 4524 ± 37 peak pairs from 26 nmol injection in triplicate vs 4019 ± 40 peak pairs from 52 nmol injection). This gain was attributed to the increased dynamic range of peak detection in nLC-MS. In the analysis of human sweat where the sample amount could be limited, nLC-MS offered the advantage of providing much higher coverage than mLC-MS. Injecting 5 nmol of dansylated sweat, 3908 ± 62 peak pairs or metabolites were detected by nLC-MS, while only 1064 ± 6 peak pairs were detected by mLC-MS. Because dansyl labeled metabolites can be captured on a reversed phase (RP) trap column for large volume injection and are well separated by RPLC, the CIL platform can be readily implemented in existing nLC-MS instruments such as those widely used in shotgun proteomics.


Subject(s)
Amines/analysis , Chromatography, High Pressure Liquid/instrumentation , Isotope Labeling , Mass Spectrometry/instrumentation , Metabolomics/methods , Nanotechnology/instrumentation , Phenols/analysis , Amines/metabolism , Carbon Isotopes , Humans , Phenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...