Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; 63(20): 4467-4484, 2023.
Article in English | MEDLINE | ID: mdl-34761963

ABSTRACT

In the new century, the most fundamental problem on a global scale is hunger and poverty reduction is one of the primary goals set by the United Nations. Currently, it is necessary to increase agricultural activities and to evaluate all agricultural products rich in nutrients without loss in order to feed the hungry population in the world. Considering that one of the most important causes of hunger in the world is inadequate access to protein content, legumes are one of the most valuable nutritional resources. In order to ensure the sustainability of legumes, alternative new ways of recycling their wastes are sought based on these multiple functions. For this purpose, recycling legume cooking waters to be used as food raw materials in various processes means reducing food waste. Recovery of nutritional components in legumes is also beneficial in vegan and vegetarian diets. In this review study, the importance of legumes in terms of global needs, their importance in terms of nutrition, the methods of obtaining the protein content of legumes, the functional properties of these proteins in the field of food processing, the gains of the evaluation and recovery of legume cooking water (Aquafaba), especially waste, were discussed.


Subject(s)
Fabaceae , Food Ingredients , Refuse Disposal , Vegetables , Food Handling/methods
2.
Meat Sci ; 121: 156-165, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27318460

ABSTRACT

In this work, the role of in situ exopolysaccharide (EPS) production under different fermentation conditions on physicochemical, microbiological, textural and microstructural properties of sucuk was determined. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 14, 16 and 18°C and time; 8, 12 and 16days) on physicochemical, microbiological, textural and microstructural properties were investigated using response surface methodology. In situ EPS production was observed to remarkably affect these properties while fermentation conditions were also seen to dominantly influence the physicochemical properties of sucuk, revealing that the ripening temperature appeared to be more determinant factor. EPS producing cultures enhanced the textural properties of sucuk which became harder, less adhesive and tougher. The microstructural analysis revealed the formation of web-like structure by in situ EPS production in sucuk mix during fermentation process. This study revealed the importance of in situ EPS production on final technological properties of sucuk.


Subject(s)
Food Handling , Meat Products/analysis , Meat Products/microbiology , Polysaccharides, Bacterial/metabolism , Animals , Colony Count, Microbial , Fermentation , Food Microbiology , Lactobacillus plantarum/metabolism , Leuconostoc mesenteroides/metabolism , Microscopy, Electron, Scanning , Swine , Temperature
3.
Carbohydr Polym ; 136: 427-40, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572373

ABSTRACT

This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties.


Subject(s)
Fermentation , Food Technology/methods , Ice Cream/microbiology , Industrial Microbiology/methods , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Rheology , Streptococcus thermophilus/metabolism
4.
Food Res Int ; 64: 634-646, 2014 Oct.
Article in English | MEDLINE | ID: mdl-30011698

ABSTRACT

In this study, natural honey was adulterated with the addition of adulterants, namely saccharose and fructose syrups at a ratio of 0%, 10%, 20%, 30%, 40% and 50% by weight. Steady, dynamic and creep tests were conducted, revealing that the changes in the flow, viscoelastic and creep behavior of natural honey were clear and remarkable. Syrup addition decreased viscosity (η), storage (G') and loss modulus (G″) values of the control honey samples. Deformation represented by the compliance (J(t)) values was more prominent in the adulterated honey samples. In addition, HPLC-RID analysis was conducted to determine major sugar composition of the adulterated samples. Pearson's correlation test indicated that there were significant (P<0.05; 0.01) correlations between sugar composition and rheology parameters, η (viscosity), K″, K⁎ (intercepts for G″ and complex modulus (G⁎), respectively) and η0 (viscosity of Maxwell dashpot), suggesting that K', K″, K⁎ and η0 could be prominent indicators for presence of saccharose or fructose syrups added in natural honey within the studied concentration levels. These results suggested that use of steady, dynamic and creep analysis would be a novel and potential approach to detect honey adulteration by fructose and saccharose syrups.

SELECTION OF CITATIONS
SEARCH DETAIL
...